1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
// Copyright 2021 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Binary fieldenum emits field bitmasks for all structs in a package marked
// "+fieldenum".
package main
import (
"flag"
"fmt"
"go/ast"
"go/parser"
"go/token"
"log"
"os"
"strings"
)
var (
outputPkg = flag.String("pkg", "", "output package")
outputFilename = flag.String("out", "-", "output filename")
)
func main() {
// Parse command line arguments.
flag.Parse()
if len(*outputPkg) == 0 {
log.Fatalf("-pkg must be provided")
}
if len(flag.Args()) == 0 {
log.Fatalf("Input files must be provided")
}
// Parse input files.
inputFiles := make([]*ast.File, 0, len(flag.Args()))
fset := token.NewFileSet()
for _, filename := range flag.Args() {
f, err := parser.ParseFile(fset, filename, nil, parser.ParseComments)
if err != nil {
log.Fatalf("Failed to parse input file %q: %v", filename, err)
}
inputFiles = append(inputFiles, f)
}
// Determine which types are marked "+fieldenum" and will consequently have
// code generated.
var typeNames []string
fieldEnumTypes := make(map[string]fieldEnumTypeInfo)
for _, f := range inputFiles {
for _, decl := range f.Decls {
d, ok := decl.(*ast.GenDecl)
if !ok || d.Tok != token.TYPE || d.Doc == nil || len(d.Specs) == 0 {
continue
}
for _, l := range d.Doc.List {
const fieldenumPrefixWithSpace = "// +fieldenum "
if l.Text == "// +fieldenum" || strings.HasPrefix(l.Text, fieldenumPrefixWithSpace) {
spec := d.Specs[0].(*ast.TypeSpec)
name := spec.Name.Name
prefix := name
if len(l.Text) > len(fieldenumPrefixWithSpace) {
prefix = strings.TrimSpace(l.Text[len(fieldenumPrefixWithSpace):])
}
st, ok := spec.Type.(*ast.StructType)
if !ok {
log.Fatalf("Type %s is marked +fieldenum, but is not a struct", name)
}
typeNames = append(typeNames, name)
fieldEnumTypes[name] = fieldEnumTypeInfo{
prefix: prefix,
structType: st,
}
break
}
}
}
}
// Collect information for each type for which code is being generated.
structInfos := make([]structInfo, 0, len(typeNames))
needAtomic := false
for _, typeName := range typeNames {
typeInfo := fieldEnumTypes[typeName]
var si structInfo
si.name = typeName
si.prefix = typeInfo.prefix
for _, field := range typeInfo.structType.Fields.List {
name := structFieldName(field)
// If the field's type is a type that is also marked +fieldenum,
// include a FieldSet for that type in this one's. The field must
// be a struct by value, since if it's a pointer then that struct
// might also point to or include this one (which would make
// FieldSet inclusion circular). It must also be a type defined in
// this package, since otherwise we don't know whether it's marked
// +fieldenum. Thus, field.Type must be an identifier (rather than
// an ast.StarExpr or SelectorExpr).
if tident, ok := field.Type.(*ast.Ident); ok {
if fieldTypeInfo, ok := fieldEnumTypes[tident.Name]; ok {
fsf := fieldSetField{
fieldName: name,
typePrefix: fieldTypeInfo.prefix,
}
si.reprByFieldSet = append(si.reprByFieldSet, fsf)
si.allFields = append(si.allFields, fsf)
continue
}
}
si.reprByBit = append(si.reprByBit, name)
si.allFields = append(si.allFields, fieldSetField{
fieldName: name,
})
// atomicbitops import will be needed for FieldSet.Load().
needAtomic = true
}
structInfos = append(structInfos, si)
}
// Build the output file.
var b strings.Builder
fmt.Fprintf(&b, "// Generated by go_fieldenum.\n\n")
fmt.Fprintf(&b, "package %s\n\n", *outputPkg)
if needAtomic {
fmt.Fprintf(&b, `import "gvisor.dev/gvisor/pkg/atomicbitops"`)
fmt.Fprintf(&b, "\n\n")
}
for _, si := range structInfos {
si.writeTo(&b)
}
if *outputFilename == "-" {
// Write output to stdout.
fmt.Printf("%s", b.String())
} else {
// Write output to file.
f, err := os.OpenFile(*outputFilename, os.O_WRONLY|os.O_CREATE|os.O_EXCL, 0644)
if err != nil {
log.Fatalf("Failed to open output file %q: %v", *outputFilename, err)
}
if _, err := f.WriteString(b.String()); err != nil {
log.Fatalf("Failed to write output file %q: %v", *outputFilename, err)
}
f.Close()
}
}
type fieldEnumTypeInfo struct {
prefix string
structType *ast.StructType
}
// structInfo contains information about the code generated for a given struct.
type structInfo struct {
// name is the name of the represented struct.
name string
// prefix is the prefix X applied to the name of each generated type and
// constant, referred to as X in the comments below for convenience.
prefix string
// reprByBit contains the names of fields in X that should be represented
// by a bit in the bit mask XFieldSet.fields, and by a bool in XFields.
reprByBit []string
// reprByFieldSet contains fields in X whose type is a named struct (e.g.
// Y) that has a corresponding FieldSet type YFieldSet, and which should
// therefore be represented by including a value of type YFieldSet in
// XFieldSet, and a value of type YFields in XFields.
reprByFieldSet []fieldSetField
// allFields contains all fields in X in order of declaration. Fields in
// reprByBit have fieldSetField.typePrefix == "".
allFields []fieldSetField
}
type fieldSetField struct {
fieldName string
typePrefix string
}
func structFieldName(f *ast.Field) string {
if len(f.Names) != 0 {
return f.Names[0].Name
}
// For embedded struct fields, the field name is the unqualified type name.
texpr := f.Type
for {
switch t := texpr.(type) {
case *ast.StarExpr:
texpr = t.X
case *ast.SelectorExpr:
texpr = t.Sel
case *ast.Ident:
return t.Name
default:
panic(fmt.Sprintf("unexpected %T", texpr))
}
}
}
func (si *structInfo) writeTo(b *strings.Builder) {
fmt.Fprintf(b, "// A %sField represents a field in %s.\n", si.prefix, si.name)
fmt.Fprintf(b, "type %sField uint\n\n", si.prefix)
if len(si.reprByBit) != 0 {
fmt.Fprintf(b, "// %sFieldX represents %s field X.\n", si.prefix, si.name)
fmt.Fprintf(b, "const (\n")
fmt.Fprintf(b, "\t%sField%s %sField = iota\n", si.prefix, si.reprByBit[0], si.prefix)
for _, fieldName := range si.reprByBit[1:] {
fmt.Fprintf(b, "\t%sField%s\n", si.prefix, fieldName)
}
fmt.Fprintf(b, ")\n\n")
}
fmt.Fprintf(b, "// %sFields represents a set of fields in %s in a literal-friendly form.\n", si.prefix, si.name)
fmt.Fprintf(b, "// The zero value of %sFields represents an empty set.\n", si.prefix)
fmt.Fprintf(b, "type %sFields struct {\n", si.prefix)
for _, fieldSetField := range si.allFields {
if fieldSetField.typePrefix == "" {
fmt.Fprintf(b, "\t%s bool\n", fieldSetField.fieldName)
} else {
fmt.Fprintf(b, "\t%s %sFields\n", fieldSetField.fieldName, fieldSetField.typePrefix)
}
}
fmt.Fprintf(b, "}\n\n")
fmt.Fprintf(b, "// %sFieldSet represents a set of fields in %s in a compact form.\n", si.prefix, si.name)
fmt.Fprintf(b, "// The zero value of %sFieldSet represents an empty set.\n", si.prefix)
fmt.Fprintf(b, "type %sFieldSet struct {\n", si.prefix)
numBitmaskUint32s := (len(si.reprByBit) + 31) / 32
for _, fieldSetField := range si.reprByFieldSet {
fmt.Fprintf(b, "\t%s %sFieldSet\n", fieldSetField.fieldName, fieldSetField.typePrefix)
}
if len(si.reprByBit) != 0 {
fmt.Fprintf(b, "\tfields [%d]atomicbitops.Uint32\n", numBitmaskUint32s)
}
fmt.Fprintf(b, "}\n\n")
if len(si.reprByBit) != 0 {
fmt.Fprintf(b, "// Contains returns true if f is present in the %sFieldSet.\n", si.prefix)
fmt.Fprintf(b, "func (fs *%sFieldSet) Contains(f %sField) bool {\n", si.prefix, si.prefix)
if numBitmaskUint32s == 1 {
fmt.Fprintf(b, "\treturn fs.fields[0].RacyLoad() & (uint32(1) << uint(f)) != 0\n")
} else {
fmt.Fprintf(b, "\treturn fs.fields[f/32].RacyLoad() & (uint32(1) << (f%%32)) != 0\n")
}
fmt.Fprintf(b, "}\n\n")
fmt.Fprintf(b, "// Add adds f to the %sFieldSet.\n", si.prefix)
fmt.Fprintf(b, "func (fs *%sFieldSet) Add(f %sField) {\n", si.prefix, si.prefix)
if numBitmaskUint32s == 1 {
fmt.Fprintf(b, "\tfs.fields[0] = atomicbitops.FromUint32(fs.fields[0].RacyLoad() | (uint32(1) << uint(f)))\n")
} else {
fmt.Fprintf(b, "\tfs.fields[f/32] = atomicbitops.FromUint32(fs.fields[f/32].RacyLoad() | (uint32(1) << (f%%32))\n")
}
fmt.Fprintf(b, "}\n\n")
fmt.Fprintf(b, "// Remove removes f from the %sFieldSet.\n", si.prefix)
fmt.Fprintf(b, "func (fs *%sFieldSet) Remove(f %sField) {\n", si.prefix, si.prefix)
if numBitmaskUint32s == 1 {
fmt.Fprintf(b, "\tfs.fields[0] = atomicbitops.FromUint32(fs.fields[0].RacyLoad() &^ (uint32(1) << uint(f)))\n")
} else {
fmt.Fprintf(b, "\tfs.fields[f/32] = atomicbitops.FromUint32(fs.fields[f/32].RacyLoad() &^ (uint32(1) << uint(f%%32)))\n")
}
fmt.Fprintf(b, "}\n\n")
}
fmt.Fprintf(b, "// Load returns a copy of the %sFieldSet.\n", si.prefix)
fmt.Fprintf(b, "// Load is safe to call concurrently with AddFieldsLoadable, but not Add or Remove.\n")
fmt.Fprintf(b, "func (fs *%sFieldSet) Load() (copied %sFieldSet) {\n", si.prefix, si.prefix)
for _, fieldSetField := range si.reprByFieldSet {
fmt.Fprintf(b, "\tcopied.%s = fs.%s.Load()\n", fieldSetField.fieldName, fieldSetField.fieldName)
}
for i := 0; i < numBitmaskUint32s; i++ {
fmt.Fprintf(b, "\tcopied.fields[%d] = atomicbitops.FromUint32(fs.fields[%d].Load())\n", i, i)
}
fmt.Fprintf(b, "\treturn\n")
fmt.Fprintf(b, "}\n\n")
fmt.Fprintf(b, "// AddFieldsLoadable adds the given fields to the %sFieldSet.\n", si.prefix)
fmt.Fprintf(b, "// AddFieldsLoadable is safe to call concurrently with Load, but not other methods (including other calls to AddFieldsLoadable).\n")
fmt.Fprintf(b, "func (fs *%sFieldSet) AddFieldsLoadable(fields %sFields) {\n", si.prefix, si.prefix)
for _, fieldSetField := range si.reprByFieldSet {
fmt.Fprintf(b, "\tfs.%s.AddFieldsLoadable(fields.%s)\n", fieldSetField.fieldName, fieldSetField.fieldName)
}
for _, fieldName := range si.reprByBit {
fieldConstName := fmt.Sprintf("%sField%s", si.prefix, fieldName)
fmt.Fprintf(b, "\tif fields.%s {\n", fieldName)
if numBitmaskUint32s == 1 {
fmt.Fprintf(b, "\t\tfs.fields[0].Store(fs.fields[0].RacyLoad() | (uint32(1) << uint(%s)))\n", fieldConstName)
} else {
fmt.Fprintf(b, "\t\tword, bit := %s/32, %s%%32\n", fieldConstName, fieldConstName)
fmt.Fprintf(b, "\t\tfs.fields[word].Store(fs.fields[word].RacyLoad() | (uint32(1) << bit))\n")
}
fmt.Fprintf(b, "\t}\n")
}
fmt.Fprintf(b, "}\n\n")
}
|