File: interpreter.go

package info (click to toggle)
golang-gvisor-gvisor 0.0~20240729.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 21,276 kB
  • sloc: asm: 3,361; ansic: 1,197; cpp: 348; makefile: 92; python: 89; sh: 83
file content (659 lines) | stat: -rw-r--r-- 17,260 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package bpf

import (
	"fmt"
	"strconv"
	"strings"
)

// Possible values for ProgramError.Code.
const (
	// DivisionByZero indicates that a program contains, or executed, a
	// division or modulo by zero.
	DivisionByZero = iota

	// InvalidEndOfProgram indicates that the last instruction of a program is
	// not a return.
	InvalidEndOfProgram

	// InvalidInstructionCount indicates that a program has zero instructions
	// or more than MaxInstructions instructions.
	InvalidInstructionCount

	// InvalidJumpTarget indicates that a program contains a jump whose target
	// is outside of the program's bounds.
	InvalidJumpTarget

	// InvalidLoad indicates that a program executed an invalid load of input
	// data.
	InvalidLoad

	// InvalidOpcode indicates that a program contains an instruction with an
	// invalid opcode.
	InvalidOpcode

	// InvalidRegister indicates that a program contains a load from, or store
	// to, a non-existent M register (index >= ScratchMemRegisters).
	InvalidRegister
)

// Error is an error encountered while compiling or executing a BPF program.
type Error struct {
	// Code indicates the kind of error that occurred.
	Code int

	// PC is the program counter (index into the list of instructions) at which
	// the error occurred.
	PC int
}

func (e Error) codeString() string {
	switch e.Code {
	case DivisionByZero:
		return "division by zero"
	case InvalidEndOfProgram:
		return "last instruction must be a return"
	case InvalidInstructionCount:
		return "invalid number of instructions"
	case InvalidJumpTarget:
		return "jump target out of bounds"
	case InvalidLoad:
		return "load out of bounds or violates input alignment requirements"
	case InvalidOpcode:
		return "invalid instruction opcode"
	case InvalidRegister:
		return "invalid M register"
	default:
		return "unknown error"
	}
}

// Error implements error.Error.
func (e Error) Error() string {
	return fmt.Sprintf("at l%d: %s", e.PC, e.codeString())
}

// Program is a BPF program that has been validated for consistency.
//
// +stateify savable
type Program struct {
	instructions []Instruction
}

// Length returns the number of instructions in the program.
func (p Program) Length() int {
	return len(p.instructions)
}

// Compile performs validation and optimization on a sequence of BPF
// instructions before wrapping them in a Program.
func Compile(insns []Instruction, optimize bool) (Program, error) {
	if len(insns) == 0 || len(insns) > MaxInstructions {
		return Program{}, Error{InvalidInstructionCount, len(insns)}
	}

	// The last instruction must be a return.
	if last := insns[len(insns)-1]; last.OpCode != (Ret|K) && last.OpCode != (Ret|A) {
		return Program{}, Error{InvalidEndOfProgram, len(insns) - 1}
	}

	// Validate each instruction. Note that we skip a validation Linux does:
	// Linux additionally verifies that every load from an M register is
	// preceded, in every path, by a store to the same M register, in order to
	// avoid having to clear M between programs
	// (net/core/filter.c:check_load_and_stores). We always start with a zeroed
	// M array.
	for pc, i := range insns {
		if i.OpCode&unusedBitsMask != 0 {
			return Program{}, Error{InvalidOpcode, pc}
		}
		switch i.OpCode & instructionClassMask {
		case Ld:
			mode := i.OpCode & loadModeMask
			switch i.OpCode & loadSizeMask {
			case W:
				if mode != Imm && mode != Abs && mode != Ind && mode != Mem && mode != Len {
					return Program{}, Error{InvalidOpcode, pc}
				}
				if mode == Mem && i.K >= ScratchMemRegisters {
					return Program{}, Error{InvalidRegister, pc}
				}
			case H, B:
				if mode != Abs && mode != Ind {
					return Program{}, Error{InvalidOpcode, pc}
				}
			default:
				return Program{}, Error{InvalidOpcode, pc}
			}
		case Ldx:
			mode := i.OpCode & loadModeMask
			switch i.OpCode & loadSizeMask {
			case W:
				if mode != Imm && mode != Mem && mode != Len {
					return Program{}, Error{InvalidOpcode, pc}
				}
				if mode == Mem && i.K >= ScratchMemRegisters {
					return Program{}, Error{InvalidRegister, pc}
				}
			case B:
				if mode != Msh {
					return Program{}, Error{InvalidOpcode, pc}
				}
			default:
				return Program{}, Error{InvalidOpcode, pc}
			}
		case St, Stx:
			if i.OpCode&storeUnusedBitsMask != 0 {
				return Program{}, Error{InvalidOpcode, pc}
			}
			if i.K >= ScratchMemRegisters {
				return Program{}, Error{InvalidRegister, pc}
			}
		case Alu:
			switch i.OpCode & aluMask {
			case Add, Sub, Mul, Or, And, Lsh, Rsh, Xor:
				break
			case Div, Mod:
				if src := i.OpCode & srcAluJmpMask; src == K && i.K == 0 {
					return Program{}, Error{DivisionByZero, pc}
				}
			case Neg:
				// Negation doesn't take a source operand.
				if i.OpCode&srcAluJmpMask != 0 {
					return Program{}, Error{InvalidOpcode, pc}
				}
			default:
				return Program{}, Error{InvalidOpcode, pc}
			}
		case Jmp:
			switch i.OpCode & jmpMask {
			case Ja:
				// Unconditional jump doesn't take a source operand.
				if i.OpCode&srcAluJmpMask != 0 {
					return Program{}, Error{InvalidOpcode, pc}
				}
				// Do the comparison in 64 bits to avoid the possibility of
				// overflow from a very large i.K.
				if uint64(pc)+uint64(i.K)+1 >= uint64(len(insns)) {
					return Program{}, Error{InvalidJumpTarget, pc}
				}
			case Jeq, Jgt, Jge, Jset:
				// jt and jf are uint16s, so there's no threat of overflow.
				if pc+int(i.JumpIfTrue)+1 >= len(insns) {
					return Program{}, Error{InvalidJumpTarget, pc}
				}
				if pc+int(i.JumpIfFalse)+1 >= len(insns) {
					return Program{}, Error{InvalidJumpTarget, pc}
				}
			default:
				return Program{}, Error{InvalidOpcode, pc}
			}
		case Ret:
			if i.OpCode&retUnusedBitsMask != 0 {
				return Program{}, Error{InvalidOpcode, pc}
			}
			if src := i.OpCode & srcRetMask; src != K && src != A {
				return Program{}, Error{InvalidOpcode, pc}
			}
		case Misc:
			if misc := i.OpCode & miscMask; misc != Tax && misc != Txa {
				return Program{}, Error{InvalidOpcode, pc}
			}
		}
	}

	if optimize {
		insns = Optimize(insns)
	}
	return Program{insns}, nil
}

// machine represents the state of a BPF virtual machine.
type machine struct {
	A uint32
	X uint32
	M [ScratchMemRegisters]uint32
}

func conditionalJumpOffset(insn Instruction, cond bool) int {
	if cond {
		return int(insn.JumpIfTrue)
	}
	return int(insn.JumpIfFalse)
}

// Exec executes a BPF program over the given input and returns its return
// value.
func Exec[endian Endianness](p Program, in Input) (uint32, error) {
	var m machine
	var pc int
	for ; pc < len(p.instructions); pc++ {
		i := p.instructions[pc]
		switch i.OpCode {
		case Ld | Imm | W:
			m.A = i.K
		case Ld | Abs | W:
			val, ok := load32[endian](in, i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = val
		case Ld | Abs | H:
			val, ok := load16[endian](in, i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = uint32(val)
		case Ld | Abs | B:
			val, ok := load8(in, i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = uint32(val)
		case Ld | Ind | W:
			val, ok := load32[endian](in, m.X+i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = val
		case Ld | Ind | H:
			val, ok := load16[endian](in, m.X+i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = uint32(val)
		case Ld | Ind | B:
			val, ok := load8(in, m.X+i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.A = uint32(val)
		case Ld | Mem | W:
			m.A = m.M[int(i.K)]
		case Ld | Len | W:
			m.A = uint32(len(in))
		case Ldx | Imm | W:
			m.X = i.K
		case Ldx | Mem | W:
			m.X = m.M[int(i.K)]
		case Ldx | Len | W:
			m.X = uint32(len(in))
		case Ldx | Msh | B:
			val, ok := load8(in, i.K)
			if !ok {
				return 0, Error{InvalidLoad, pc}
			}
			m.X = 4 * uint32(val&0xf)
		case St:
			m.M[int(i.K)] = m.A
		case Stx:
			m.M[int(i.K)] = m.X
		case Alu | Add | K:
			m.A += i.K
		case Alu | Add | X:
			m.A += m.X
		case Alu | Sub | K:
			m.A -= i.K
		case Alu | Sub | X:
			m.A -= m.X
		case Alu | Mul | K:
			m.A *= i.K
		case Alu | Mul | X:
			m.A *= m.X
		case Alu | Div | K:
			// K != 0 already checked by Compile.
			m.A /= i.K
		case Alu | Div | X:
			if m.X == 0 {
				return 0, Error{DivisionByZero, pc}
			}
			m.A /= m.X
		case Alu | Or | K:
			m.A |= i.K
		case Alu | Or | X:
			m.A |= m.X
		case Alu | And | K:
			m.A &= i.K
		case Alu | And | X:
			m.A &= m.X
		case Alu | Lsh | K:
			m.A <<= i.K
		case Alu | Lsh | X:
			m.A <<= m.X
		case Alu | Rsh | K:
			m.A >>= i.K
		case Alu | Rsh | X:
			m.A >>= m.X
		case Alu | Neg:
			m.A = uint32(-int32(m.A))
		case Alu | Mod | K:
			// K != 0 already checked by Compile.
			m.A %= i.K
		case Alu | Mod | X:
			if m.X == 0 {
				return 0, Error{DivisionByZero, pc}
			}
			m.A %= m.X
		case Alu | Xor | K:
			m.A ^= i.K
		case Alu | Xor | X:
			m.A ^= m.X
		case Jmp | Ja:
			pc += int(i.K)
		case Jmp | Jeq | K:
			pc += conditionalJumpOffset(i, m.A == i.K)
		case Jmp | Jeq | X:
			pc += conditionalJumpOffset(i, m.A == m.X)
		case Jmp | Jgt | K:
			pc += conditionalJumpOffset(i, m.A > i.K)
		case Jmp | Jgt | X:
			pc += conditionalJumpOffset(i, m.A > m.X)
		case Jmp | Jge | K:
			pc += conditionalJumpOffset(i, m.A >= i.K)
		case Jmp | Jge | X:
			pc += conditionalJumpOffset(i, m.A >= m.X)
		case Jmp | Jset | K:
			pc += conditionalJumpOffset(i, (m.A&i.K) != 0)
		case Jmp | Jset | X:
			pc += conditionalJumpOffset(i, (m.A&m.X) != 0)
		case Ret | K:
			return i.K, nil
		case Ret | A:
			return m.A, nil
		case Misc | Tax:
			m.A = m.X
		case Misc | Txa:
			m.X = m.A
		default:
			return 0, Error{InvalidOpcode, pc}
		}
	}
	return 0, Error{InvalidEndOfProgram, pc}
}

// ExecutionMetrics represents the result of executing a BPF program.
type ExecutionMetrics struct {
	// ReturnValue is the result of the program execution.
	ReturnValue uint32

	// Coverage maps instruction indexes to whether or not they were executed.
	// This slice has the same size as the number of instructions as the BPF
	// program that was run, so it can be used as a way to get the program size.
	// Since an instruction can never run twice in BPF, this can also be used
	// to determine how many instructions were executed.
	Coverage []bool

	// InputAccessed maps input byte offsets to whether or not they were
	// read by the program during execution.
	InputAccessed []bool
}

// String returns a human-readable view of an `Execution`.
func (e *ExecutionMetrics) String() string {
	type intRange struct {
		from, to int
	}

	// addRangeString formats an `intRange` and writes it to `sb`.
	addRangeString := func(sb *strings.Builder, rng intRange) {
		if rng.from == rng.to {
			sb.WriteString(strconv.Itoa(rng.from))
		} else {
			sb.WriteString(strconv.Itoa(rng.from))
			sb.WriteRune('-')
			sb.WriteString(strconv.Itoa(rng.to))
		}
	}

	// `getRanges` takes a slice of booleans and returns ranges of all-true
	// indexes.
	getRanges := func(s []bool) []intRange {
		var ranges []intRange
		firstTrueIndex := -1
		for i, covered := range s {
			if covered {
				if firstTrueIndex == -1 {
					firstTrueIndex = i
				}
				continue
			}
			if firstTrueIndex != -1 {
				ranges = append(ranges, intRange{firstTrueIndex, i - 1})
				firstTrueIndex = -1
			}
		}
		if firstTrueIndex != -1 {
			ranges = append(ranges, intRange{firstTrueIndex, len(s) - 1})
		}
		return ranges
	}

	// ranges returns a human-friendly representation of the
	// ranges of items in `s` that are contiguously `true`.
	ranges := func(s []bool) string {
		if len(s) == 0 {
			return "empty"
		}
		allFalse := true
		allTrue := true
		for _, v := range s {
			if v {
				allFalse = false
			} else {
				allTrue = false
			}
		}
		if allFalse {
			return "none"
		}
		if allTrue {
			return "all"
		}
		ranges := getRanges(s)
		var sb strings.Builder
		for i, rng := range ranges {
			if i != 0 {
				sb.WriteRune(',')
			}
			addRangeString(&sb, rng)
		}
		return sb.String()
	}
	executedInstructions := 0
	for _, covered := range e.Coverage {
		if covered {
			executedInstructions++
		}
	}
	return fmt.Sprintf("returned %d, covered %d/%d instructions (%s), read input bytes %s (%d total input bytes)", e.ReturnValue, executedInstructions, len(e.Coverage), ranges(e.Coverage), ranges(e.InputAccessed), len(e.InputAccessed))
}

// markInputRead marks the `bytesRead` bytes starting at `offset` as having
// been read from the input. This function assumes that the offset and number
// of bytes have already been verified as valid.
func (e *ExecutionMetrics) markInputRead(offset uint32, bytesRead int) {
	if int(offset)+bytesRead > len(e.InputAccessed) {
		panic(fmt.Sprintf("invalid offset or number of bytes read: offset=%d bytesRead=%d len=%d", offset, bytesRead, len(e.InputAccessed)))
	}
	for i := 0; i < bytesRead; i++ {
		e.InputAccessed[int(offset)+i] = true
	}
}

// InstrumentedExec executes a BPF program over the given input while
// instrumenting it: recording memory accesses and lines executed.
// This is slower than Exec, but should return equivalent results.
func InstrumentedExec[endian Endianness](p Program, in Input) (ExecutionMetrics, error) {
	ret := ExecutionMetrics{
		Coverage:      make([]bool, len(p.instructions)),
		InputAccessed: make([]bool, len(in)),
	}
	var m machine
	var pc int
	for ; pc < len(p.instructions); pc++ {
		ret.Coverage[pc] = true
		i := p.instructions[pc]
		switch i.OpCode {
		case Ld | Imm | W:
			m.A = i.K
		case Ld | Abs | W:
			val, ok := load32[endian](in, i.K)
			if !ok {
				return ret, Error{InvalidLoad, pc}
			}
			ret.markInputRead(i.K, 4)
			m.A = val
		case Ld | Abs | H:
			val, ok := load16[endian](in, i.K)
			if !ok {
				return ret, Error{InvalidLoad, pc}
			}
			ret.markInputRead(i.K, 2)
			m.A = uint32(val)
		case Ld | Abs | B:
			val, ok := load8(in, i.K)
			if !ok {
				return ret, Error{InvalidLoad, pc}
			}
			ret.markInputRead(i.K, 1)
			m.A = uint32(val)
		case Ld | Ind | W:
			val, ok := load32[endian](in, m.X+i.K)
			if !ok {
				return ret, Error{InvalidLoad, pc}
			}
			ret.markInputRead(m.X+i.K, 4)
			m.A = val
		case Ld | Ind | H:
			val, ok := load16[endian](in, m.X+i.K)
			if !ok {
				return ret, Error{InvalidLoad, pc}
			}
			ret.markInputRead(m.X+i.K, 2)
			m.A = uint32(val)
		case Ld | Ind | B:
			val, ok := load8(in, m.X+i.K)
			if !ok {
				return ret, Error{InvalidLoad, pc}
			}
			ret.markInputRead(m.X+i.K, 1)
			m.A = uint32(val)
		case Ld | Mem | W:
			m.A = m.M[int(i.K)]
		case Ld | Len | W:
			m.A = uint32(len(in))
		case Ldx | Imm | W:
			m.X = i.K
		case Ldx | Mem | W:
			m.X = m.M[int(i.K)]
		case Ldx | Len | W:
			m.X = uint32(len(in))
		case Ldx | Msh | B:
			val, ok := load8(in, i.K)
			if !ok {
				return ret, Error{InvalidLoad, pc}
			}
			ret.markInputRead(i.K, 1)
			m.X = 4 * uint32(val&0xf)
		case St:
			m.M[int(i.K)] = m.A
		case Stx:
			m.M[int(i.K)] = m.X
		case Alu | Add | K:
			m.A += i.K
		case Alu | Add | X:
			m.A += m.X
		case Alu | Sub | K:
			m.A -= i.K
		case Alu | Sub | X:
			m.A -= m.X
		case Alu | Mul | K:
			m.A *= i.K
		case Alu | Mul | X:
			m.A *= m.X
		case Alu | Div | K:
			// K != 0 already checked by Compile.
			m.A /= i.K
		case Alu | Div | X:
			if m.X == 0 {
				return ret, Error{DivisionByZero, pc}
			}
			m.A /= m.X
		case Alu | Or | K:
			m.A |= i.K
		case Alu | Or | X:
			m.A |= m.X
		case Alu | And | K:
			m.A &= i.K
		case Alu | And | X:
			m.A &= m.X
		case Alu | Lsh | K:
			m.A <<= i.K
		case Alu | Lsh | X:
			m.A <<= m.X
		case Alu | Rsh | K:
			m.A >>= i.K
		case Alu | Rsh | X:
			m.A >>= m.X
		case Alu | Neg:
			m.A = uint32(-int32(m.A))
		case Alu | Mod | K:
			// K != 0 already checked by Compile.
			m.A %= i.K
		case Alu | Mod | X:
			if m.X == 0 {
				return ret, Error{DivisionByZero, pc}
			}
			m.A %= m.X
		case Alu | Xor | K:
			m.A ^= i.K
		case Alu | Xor | X:
			m.A ^= m.X
		case Jmp | Ja:
			pc += int(i.K)
		case Jmp | Jeq | K:
			pc += conditionalJumpOffset(i, m.A == i.K)
		case Jmp | Jeq | X:
			pc += conditionalJumpOffset(i, m.A == m.X)
		case Jmp | Jgt | K:
			pc += conditionalJumpOffset(i, m.A > i.K)
		case Jmp | Jgt | X:
			pc += conditionalJumpOffset(i, m.A > m.X)
		case Jmp | Jge | K:
			pc += conditionalJumpOffset(i, m.A >= i.K)
		case Jmp | Jge | X:
			pc += conditionalJumpOffset(i, m.A >= m.X)
		case Jmp | Jset | K:
			pc += conditionalJumpOffset(i, (m.A&i.K) != 0)
		case Jmp | Jset | X:
			pc += conditionalJumpOffset(i, (m.A&m.X) != 0)
		case Ret | K:
			ret.ReturnValue = i.K
			return ret, nil
		case Ret | A:
			ret.ReturnValue = m.A
			return ret, nil
		case Misc | Tax:
			m.A = m.X
		case Misc | Txa:
			m.X = m.A
		default:
			return ret, Error{InvalidOpcode, pc}
		}
	}
	return ret, Error{InvalidEndOfProgram, pc}
}