1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
// Copyright 2023 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package bpf
import (
"fmt"
"sort"
)
const (
// maxConditionalJumpOffset is the maximum offset of a conditional
// jump instruction. Conditional jump offsets are specified as an
// unsigned 8-bit integer.
maxConditionalJumpOffset = (1 << 8) - 1
// maxUnconditionalJumpOffset is the maximum offset of an unconditional
// jump instruction.
// Unconditional jumps are stored in an uint32, but here we limit it to
// what would fit in a uint16.
// BPF programs (once uploaded into the kernel) are limited to
// `BPF_MAXINSNS`, which is 4096 in Linux as of this writing.
// We need a value larger than `BPF_MAXINSNS` here in order to support
// optimizing programs that are initially larger than `BPF_MAXINSNS` but
// that can be optimized to fit within that limit. However, programs that
// jump 2^32-1 instructions are probably not optimizable enough to fit
// regardless.
// This number is a middle ground that should be plenty given the type of
// program we expect to optimize, while also not trying too hard to
// optimize unoptimizable programs.
maxUnconditionalJumpOffset = (1 << 16) - 1
)
// optimizerFunc is a function type that can optimize a BPF program.
// It returns the updated set of instructions, along with whether any
// modification was made.
type optimizerFunc func(insns []Instruction) ([]Instruction, bool)
// optimizeConditionalJumps looks for conditional jumps which go to an
// unconditional jump that goes to a final target fewer than
// `maxConditionalJumpOffset` instructions away.
// These can safely be rewritten to not require the extra unconditional jump.
// It returns the optimized set of instructions, along with whether any change
// was made.
func optimizeConditionalJumps(insns []Instruction) ([]Instruction, bool) {
changed := false
for pc, ins := range insns {
if !ins.IsConditionalJump() {
continue // Not a conditional jump instruction.
}
// Take care of "true" target:
{
jumpTrueOffset := pc + int(ins.JumpIfTrue) + 1
jumpTrueIns := insns[jumpTrueOffset]
if jumpTrueIns.OpCode&instructionClassMask == Jmp && jumpTrueIns.OpCode&jmpMask == Ja {
if finalJumpTrueOffset := int(ins.JumpIfTrue) + 1 + int(jumpTrueIns.K); finalJumpTrueOffset <= maxConditionalJumpOffset {
// We can optimize the "true" target.
ins.JumpIfTrue = uint8(finalJumpTrueOffset)
changed = true
}
}
}
// Take care of "false" target:
{
jumpFalseOffset := pc + int(ins.JumpIfFalse) + 1
jumpFalseIns := insns[jumpFalseOffset]
if jumpFalseIns.OpCode&instructionClassMask == Jmp && jumpFalseIns.OpCode&jmpMask == Ja {
if finalJumpFalseOffset := int(ins.JumpIfFalse) + 1 + int(jumpFalseIns.K); finalJumpFalseOffset <= maxConditionalJumpOffset {
// We can optimize the "false" target.
ins.JumpIfFalse = uint8(finalJumpFalseOffset)
changed = true
}
}
}
insns[pc] = ins
}
return insns, changed
}
// optimizeSameTargetConditionalJumps looks for conditional jumps where both
// the "true" and "false" targets go to the same place, and rewrites them to
// an unconditional jump to that place.
// This can happen even for legitimate programs when resolving the target of
// indirect jumps ends up at the same place.
// It returns the optimized set of instructions, along with whether any change
// was made.
func optimizeSameTargetConditionalJumps(insns []Instruction) ([]Instruction, bool) {
changed := false
for pc, ins := range insns {
if !ins.IsConditionalJump() {
continue // Not a conditional jump instruction.
}
if ins.JumpIfTrue != ins.JumpIfFalse {
continue // Not the same target.
}
insns[pc] = Jump(Jmp|Ja, uint32(ins.JumpIfTrue), 0, 0)
changed = true
}
return insns, changed
}
// optimizeUnconditionalJumps looks for conditional jumps which go to another
// unconditional jump.
func optimizeUnconditionalJumps(insns []Instruction) ([]Instruction, bool) {
changed := false
for pc, ins := range insns {
if !ins.IsUnconditionalJump() {
continue // Not an unconditional jump instruction.
}
jumpOffset := pc + int(ins.K) + 1
jumpIns := insns[jumpOffset]
if !jumpIns.IsUnconditionalJump() {
// Not jumping to an unconditional jump.
continue
}
finalJumpOffset := int(ins.K) + 1 + int(jumpIns.K)
if finalJumpOffset > maxUnconditionalJumpOffset {
// Final jump offset too large to fit in a single unconditional jump.
continue
}
// We can optimize the final target.
ins.K = uint32(finalJumpOffset)
insns[pc] = ins
changed = true
}
return insns, changed
}
// codeRemoval efficiently tracks indexes to remove from instructions.
type codeRemoval struct {
insns []Instruction
toRemove []int
}
// MarkRemoved adds a new instruction index to be removed.
func (cr *codeRemoval) MarkRemoved(index int) {
if cr.toRemove == nil {
cr.toRemove = make([]int, 0, len(cr.insns))
}
cr.toRemove = append(cr.toRemove, index)
}
// Apply returns the set of instructions after removing marked indexes,
// along with a boolean representing whether any instruction was removed.
func (cr *codeRemoval) Apply() ([]Instruction, bool) {
if len(cr.toRemove) == 0 {
return cr.insns, false
}
sort.Ints(cr.toRemove)
for i := len(cr.toRemove) - 1; i >= 0; i-- {
pc := cr.toRemove[i]
cr.insns = append(cr.insns[:pc], cr.insns[pc+1:]...)
decrementJumps(cr.insns, pc)
}
return cr.insns, true
}
// decrementJumps decrements all jumps within `insns` that are jumping to an
// instruction with index larger than `target`, the index of an
// instruction that just got removed (i.e. `target` now points to the
// instruction that was directly following the removed instruction).
// Jumps that targeted `target` itself will not be affected, i.e. they will
// point to the instruction that directly followed the removed instruction.
// `insns` is modified in-place.
func decrementJumps(insns []Instruction, target int) {
for pc := 0; pc < target; pc++ {
ins := insns[pc]
if !ins.IsJump() {
continue
}
if ins.IsUnconditionalJump() {
// Unconditional jump, check K:
if pc+int(ins.K)+1 > target {
ins.K--
}
} else {
// Conditional jump, check true target:
if pc+int(ins.JumpIfTrue)+1 > target {
ins.JumpIfTrue--
}
// ... And check false target:
if pc+int(ins.JumpIfFalse)+1 > target {
ins.JumpIfFalse--
}
}
insns[pc] = ins
}
}
// removeZeroInstructionJumps removes unconditional jumps that jump zero
// instructions forward. This may seem silly but it can happen due to other
// optimizations in this file which decrement jump target indexes.
func removeZeroInstructionJumps(insns []Instruction) ([]Instruction, bool) {
removal := codeRemoval{insns: insns}
for pc, ins := range insns {
if !ins.IsUnconditionalJump() || ins.K != 0 {
continue
}
removal.MarkRemoved(pc)
}
return removal.Apply()
}
// removeDeadCode removes instructions which are unreachable.
// This can happen due to the other optimizations in this file,
// e.g. optimizeConditionalJumps.
// In addition, removing dead code means the program is shorter,
// which in turn may make further jump optimizations possible.
func removeDeadCode(insns []Instruction) ([]Instruction, bool) {
if len(insns) == 0 {
return insns, false
}
// Keep track of which lines are reachable from all instructions in the program.
reachable := make([]bool, len(insns))
cursors := make([]int, 1, len(insns))
cursors[0] = 0
for len(cursors) > 0 {
cursor := cursors[0]
cursors = cursors[1:]
if reachable[cursor] {
continue
}
reachable[cursor] = true
ins := insns[cursor]
switch ins.OpCode & instructionClassMask {
case Ret:
// Return instructions are terminal, add no new cursor.
case Jmp:
// Add a new cursor wherever the jump can go.
if ins.IsUnconditionalJump() {
// Unconditional jump:
cursors = append(cursors, cursor+int(ins.K)+1)
} else {
// Conditional jump:
cursors = append(cursors, cursor+int(ins.JumpIfTrue)+1, cursor+int(ins.JumpIfFalse)+1)
}
default:
// Other instructions simply flow forward.
cursors = append(cursors, cursor+1)
}
}
// Now remove unreachable code.
removal := codeRemoval{insns: insns}
for pc := range insns {
if !reachable[pc] {
removal.MarkRemoved(pc)
}
}
return removal.Apply()
}
// optimizeJumpsToReturn replaces unconditional jumps that go to return
// statements by a copy of that return statement.
func optimizeJumpsToReturn(insns []Instruction) ([]Instruction, bool) {
changed := false
for pc, ins := range insns {
if !ins.IsUnconditionalJump() {
continue // Not an unconditional jump instruction.
}
targetIns := insns[pc+int(ins.K)+1]
if targetIns.OpCode&instructionClassMask != Ret {
continue // Not jumping to a return instruction.
}
insns[pc] = targetIns
changed = true
}
return insns, changed
}
// removeRedundantLoads removes some redundant load instructions
// when the value in register A is already the same value as what is
// being loaded.
func removeRedundantLoads(insns []Instruction) ([]Instruction, bool) {
// reverseWalk maps instruction indexes I to the set of instruction indexes
// that, after their execution, may result in the control flow jumping to I.
reverseWalk := make([]map[int]struct{}, len(insns))
for pc := range insns {
reverseWalk[pc] = make(map[int]struct{})
}
for pc, ins := range insns {
if ins.IsReturn() {
continue // Return instructions are terminal.
}
if ins.IsJump() {
for _, offset := range ins.JumpOffsets() {
reverseWalk[pc+int(offset.Offset)+1][pc] = struct{}{}
}
continue
}
// All other instructions flow through.
reverseWalk[pc+1][pc] = struct{}{}
}
// Now look for redundant load instructions.
removal := codeRemoval{insns: insns}
for pc, ins := range insns {
if ins.OpCode&instructionClassMask != Ld {
continue
}
// Walk backwards until either we've reached the beginning of the program,
// or we've reached an operation which modifies register A.
lastModifiedA := -1
beforePCs := reverseWalk[pc]
walk:
for {
switch len(beforePCs) {
case 0:
// We've reached the beginning of the program without modifying A.
break walk
case 1:
var beforePC int
for bpc := range beforePCs { // Note: we know that this map only has one element.
beforePC = bpc
}
if !insns[beforePC].ModifiesRegisterA() {
beforePCs = reverseWalk[beforePC]
continue walk
}
lastModifiedA = beforePC
break walk
default:
// Multiple ways to get to `pc`.
// For simplicity, we only support the single-branch case right now.
break walk
}
}
if lastModifiedA != -1 && insns[pc].Equal(insns[lastModifiedA]) {
removal.MarkRemoved(pc)
}
}
return removal.Apply()
}
// jumpRewriteOperation rewrites a jump target.
type jumpRewriteOperation struct {
pc int // Rewrite instruction at this offset.
jumpType JumpType // Rewrite this type of jump.
rewriteTo int // Rewrite the jump offset to this value.
}
// rewriteAllJumpsToReturn rewrites *all* jump instructions that go to
// `fromPC` to go to `toPC` instead, if possible without converting jumps
// from conditional to unconditional. `fromPC` and `toPC` must point to
// identical return instructions.
// It is all-or-nothing: either all jump instructions must be rewritable
// (in which case they will all be rewritten, and this function will
// return true), or no jump instructions will be rewritten, and this
// function will return false.
// This function also returns false in the vacuous case (i.e. there are
// no jump instructions that go to `fromPC` in the first place).
// This function is used in `optimizeJumpsToSmallestSetOfReturns`.
// As a sanity check, it verifies that `fromPC` and `toPC` are functionally
// identical return instruction, and panics otherwise.
// `rewriteOps` is a buffer of jump rewrite operations meant to be
// efficiently reusable across calls to this function.
func rewriteAllJumpsToReturn(insns []Instruction, fromPC, toPC int, rewriteOps []jumpRewriteOperation) bool {
fromIns, toIns := insns[fromPC], insns[toPC]
if !fromIns.IsReturn() {
panic(fmt.Sprintf("attempted to rewrite jumps from {pc=%d: %v} which is not a return instruction", fromPC, fromIns))
}
if !toIns.IsReturn() {
panic(fmt.Sprintf("attempted to rewrite jumps to {pc=%d: %v} which is not a return instruction", toPC, toIns))
}
if !fromIns.Equal(toIns) {
panic(fmt.Sprintf("attempted to rewrite jump target to a different return instruction: from={pc=%d: %v}, to={pc=%d: %v}", fromPC, fromIns, toPC, toIns))
}
// Scan once, and populate `rewriteOps` as a list of rewrite operations
// that should be run if the rewrite is feasible.
rewriteOps = rewriteOps[:0]
for pc := 0; pc < fromPC; pc++ {
ins := insns[pc]
// Note: `neededOffset` may be negative, in case where we are rewriting
// the jump target to go to an earlier instruction, and we are dealing
// with the instructions that come after that.
// This isn't necessarily a dealbreaker, we just need to make sure that
// `ins` is either not a jump statement, or it is a jump statement that
// doesn't go to `fromPC` (otherwise, only then would it need to jump
// backwards).
neededOffset := toPC - pc - 1
if ins.IsConditionalJump() {
if jumpTrueTarget := pc + int(ins.JumpIfTrue) + 1; jumpTrueTarget == fromPC {
if neededOffset < 0 || neededOffset > maxConditionalJumpOffset {
return false
}
rewriteOps = append(rewriteOps, jumpRewriteOperation{
pc: pc,
jumpType: JumpTrue,
rewriteTo: neededOffset,
})
}
if jumpFalseTarget := pc + int(ins.JumpIfFalse) + 1; jumpFalseTarget == fromPC {
if neededOffset < 0 || neededOffset > maxConditionalJumpOffset {
return false
}
rewriteOps = append(rewriteOps, jumpRewriteOperation{
pc: pc,
jumpType: JumpFalse,
rewriteTo: neededOffset,
})
}
} else if ins.IsUnconditionalJump() {
if jumpTarget := pc + int(ins.K) + 1; jumpTarget == fromPC {
if neededOffset < 0 || neededOffset > maxUnconditionalJumpOffset {
return false
}
rewriteOps = append(rewriteOps, jumpRewriteOperation{
pc: pc,
jumpType: JumpDirect,
rewriteTo: neededOffset,
})
}
}
}
if len(rewriteOps) == 0 {
return false // No jump statements to rewrite.
}
// Rewrite is feasible, so do it.
for _, op := range rewriteOps {
ins := insns[op.pc]
switch op.jumpType {
case JumpTrue:
ins.JumpIfTrue = uint8(op.rewriteTo)
case JumpFalse:
ins.JumpIfFalse = uint8(op.rewriteTo)
case JumpDirect:
ins.K = uint32(op.rewriteTo)
}
insns[op.pc] = ins
}
return true
}
// optimizeJumpsToSmallestSetOfReturns modifies jump targets that go to
// return statements to go to an identical return statement (which still
// fits within the maximum jump offsets), with the goal of minimizing the
// total number of such return statements needed within the program overall.
// The return statements that are skipped this way can then be removed by
// the `removeDeadCode` optimizer, which should come earlier in the
// optimizer list to ensure this optimizer only runs on instructions with
// no dead code in them.
// Within binary search trees, this allows deduplicating return statements
// across multiple conditions and makes them much shorter. In turn, this
// allows pruning these redundant return instructions as
// they become dead, and therefore makes the code shorter.
// (Essentially, we create a common "jump to return" doormat that everyone in
// Office Space^W^W^W^W any instruction in range can jump to.)
//
// Conceptually:
//
// .. if (foo) goto A else goto B
// A: return rejected
// B: if (bar) goto C else goto D
// C: return rejected
// D: if (baz) goto E else goto F
// E: return rejected
// F: return accepted
// ...
// (Another set of rules in the program):
// .. if (foo2) goto G else goto H
// G: return accepted
// H: if (bar2) goto I else goto J
// I: return accepted
// J: return rejected
//
// becomes (after the dead code removal optimizer runs as well):
//
// .. if (foo) goto J else goto B
// B: if (bar) goto J else goto D
// D: if (baz) goto J else goto I
// ...
// .. if (foo2) goto I else goto H
// H: if (bar2) goto I else goto J
// I: return accepted
// J: return rejected
func optimizeJumpsToSmallestSetOfReturns(insns []Instruction) ([]Instruction, bool) {
// This is probably an NP-complete problem, so this approach does not
// attempt to be optimal. Not being optimal is OK, we just end up with
// a program that's slightly longer than necessary.
// Rough sketch of the algorithm:
// For each return instruction in the program:
// Count the number of jump instructions that flow to it ("popularity").
// Also add `len(insns)` to the count if the instruction just before
// the return instruction is neither a jump or a return instruction,
// as the program can also flow through to it. This makes the return
// instruction non-removable, but that in turn means that it is a very
// good target for other jumps to jump to.
// Build a map of lists of return instructions sorted by how many other
// instructions flow to it, in ascending order.
// The map key is the return value of the return instruction.
// Iterate over this map (for each possible return value):
// Iterate over the list of return instructions that return this value:
// If the return instruction is unreachable, skip it.
// If the return instruction is reachable by fallthrough (i.e. the
// instruction just before it is not a jump nor a return), skip it.
// Otherwise, see if it's possible to move all jump targets of this
// instruction to any other return instruction in the list (starting
// from the end of the sorted list, i.e. the "most popular" return
// instruction that returns the same value), without needing to
// convert conditional jumps into unconditional ones.
// If it's possible, move all jump targets to it.
// We may redundantly update multiple jump targets in one go which may be
// optimized further in later passes (e.g. if unconditional jumps can be
// removed and trim the program further, expanding the set of possible
// rewrites beyond what we considered in this pass), but that's OK.
// This pass will run again afterwards and eventually pick them up, and this
// is still more efficient over running this (expensive) pass after each
// single rewrite happens.
changed := false
// retPopularity maps offsets (pc) of return instructions to the number of
// jump targets that point to them, +numInstructions if the program can also
// fall through to it.
numInstructions := len(insns)
retPopularity := make([]int, numInstructions)
// retCanBeFallenThrough maps offsets (pc) of return instructions to whether
// or not they can be fallen through (i.e. not jumped to).
retCanBeFallenThrough := make([]bool, numInstructions)
// retValueToPC maps return values to a set of instructions that return
// that value.
// In BPF, the value of the K register is part of the return instruction
// itself ("immediate" in assembly parlance), whereas the A register is
// more of a regular register (previous operations may store/load/modify
// it). So any return statement that returns the value of the A register
// is functionally identical to any other, but any return statement that
// returns the value of the K register must have the same value of K in
// the return instruction for it to be functionally equivalent.
// So, for return instructions that return K, we use the immediate value
// of the K register (which is a uint32), and for return instructions
// that return the A register, we use the stand-in value
// "0xaaaaaaaaaaaaaaaa" (which doesn't fit in uint32, so it can't conflict
// with an immediate value of K).
const retRegisterA = 0xaaaaaaaaaaaaaaaa
retValueToPC := make(map[uint64][]int)
for pc, ins := range insns {
if !ins.IsReturn() {
continue // Not a conditional jump instruction.
}
var retValue uint64
switch ins.OpCode - Ret {
case A:
retValue = retRegisterA
case K:
retValue = uint64(ins.K)
default:
panic(fmt.Sprintf("unknown return value in instruction at pc=%d: %v", pc, ins))
}
popularity := 0
canBeFallenThrough := false
for pc2 := 0; pc2 < pc; pc2++ {
ins2 := insns[pc2]
switch ins2.OpCode & instructionClassMask {
case Ret:
// Do nothing.
case Jmp:
if ins2.IsConditionalJump() {
// Note that the optimizeSameTargetConditionalJumps should make it
// such that it's not possible for there to be a conditional jump
// with identical "true" and "false" targets, so this should not
// result in adding 2 to `popularity`.
if jumpTrueTarget := pc2 + int(ins2.JumpIfTrue) + 1; jumpTrueTarget == pc {
popularity++
}
if jumpFalseTarget := pc2 + int(ins2.JumpIfFalse) + 1; jumpFalseTarget == pc {
popularity++
}
} else {
if jumpTarget := pc2 + int(ins2.K) + 1; jumpTarget == pc {
popularity++
}
}
default:
if pc2 == pc-1 {
// This return instruction can be fallen through to.
popularity += numInstructions
canBeFallenThrough = true
}
}
}
retValueToPC[retValue] = append(retValueToPC[retValue], pc)
retPopularity[pc] = popularity
retCanBeFallenThrough[pc] = canBeFallenThrough
}
rewriteOps := make([]jumpRewriteOperation, 0, len(insns))
for _, pcs := range retValueToPC {
sort.Slice(pcs, func(i, j int) bool {
// Sort `pcs` in order of ascending popularity.
// If the popularity is the same, sort by PC.
if retPopularity[pcs[i]] != retPopularity[pcs[j]] {
return retPopularity[pcs[i]] < retPopularity[pcs[j]]
}
return pcs[i] < pcs[j]
})
for i, unpopularPC := range pcs {
if retCanBeFallenThrough[unpopularPC] {
// Can't remove this return instruction, so no need to try
// to check if we can rewrite other instructions that jump to it.
continue
}
for j := len(pcs) - 1; j > i; j-- {
popularPC := pcs[j]
// Check if we can rewrite all instructions that jump to `unpopularPC`
// to instead jump to `popularPC`.
if rewriteAllJumpsToReturn(insns, unpopularPC, popularPC, rewriteOps) {
changed = true
break
}
}
}
}
return insns, changed
}
// Optimize losslessly optimizes a BPF program using the given optimization
// functions.
// Optimizers should be ranked in order of importance, with the most
// important first.
// An optimizer will be exhausted before the next one is ever run.
// Earlier optimizers are re-exhausted if later optimizers cause change.
// The BPF instructions are assumed to have been checked for validity and
// consistency.
// The instructions in `insns` may be modified in-place.
func optimize(insns []Instruction, funcs []optimizerFunc) []Instruction {
for changed := true; changed; {
for _, fn := range funcs {
if insns, changed = fn(insns); changed {
break
}
}
}
return insns
}
// Optimize losslessly optimizes a BPF program.
// The BPF instructions are assumed to have been checked for validity and
// consistency.
// The instructions in `insns` may be modified in-place.
func Optimize(insns []Instruction) []Instruction {
return optimize(insns, []optimizerFunc{
optimizeConditionalJumps,
optimizeSameTargetConditionalJumps,
optimizeUnconditionalJumps,
optimizeJumpsToReturn,
removeZeroInstructionJumps,
removeDeadCode,
removeRedundantLoads,
optimizeJumpsToSmallestSetOfReturns,
})
}
|