1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package cpuid provides basic functionality for creating and adjusting CPU
// feature sets.
//
// Each architecture should define its own FeatureSet type, that must be
// savable, along with an allFeatures map, appropriate arch hooks and a
// HostFeatureSet function. This file contains common functionality to all
// architectures, which is essentially string munging and some errors.
//
// Individual architectures may export methods on FeatureSet that are relevant,
// e.g. FeatureSet.Vendor(). Common to all architectures, FeatureSets include
// HasFeature, which provides a trivial mechanism to test for the presence of
// specific hardware features. The hardware features are also defined on a
// per-architecture basis.
package cpuid
import (
"encoding/binary"
"fmt"
"os"
"runtime"
"strings"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sync"
)
// contextID is the package for anyContext.Context.Value keys.
type contextID int
const (
// CtxFeatureSet is the FeatureSet for the context.
CtxFeatureSet contextID = iota
// hardware capability bit vector.
_AT_HWCAP = 16
// hardware capability bit vector 2.
_AT_HWCAP2 = 26
)
// anyContext represents context.Context.
type anyContext interface {
Value(key any) any
}
// FromContext returns the FeatureSet from the context, if available.
func FromContext(ctx anyContext) FeatureSet {
v := ctx.Value(CtxFeatureSet)
if v == nil {
return FeatureSet{} // Panics if used.
}
return v.(FeatureSet)
}
// Feature is a unique identifier for a particular cpu feature. We just use an
// int as a feature number on x86 and arm64.
//
// On x86, features are numbered according to "blocks". Each block is 32 bits, and
// feature bits from the same source (cpuid leaf/level) are in the same block.
//
// On arm64, features are numbered according to the ELF HWCAP definition, from
// arch/arm64/include/uapi/asm/hwcap.h.
type Feature int
// allFeatureInfo is the value for allFeatures.
type allFeatureInfo struct {
// displayName is the short display name for the feature.
displayName string
// shouldAppear indicates whether the feature normally appears in
// cpuinfo. This affects FlagString only.
shouldAppear bool
}
// String implements fmt.Stringer.String.
func (f Feature) String() string {
info, ok := allFeatures[f]
if ok {
return info.displayName
}
return fmt.Sprintf("[0x%x?]", int(f)) // No given name.
}
// reverseMap is a map from displayName to Feature.
var reverseMap = func() map[string]Feature {
m := make(map[string]Feature)
for feature, info := range allFeatures {
if info.displayName != "" {
// Sanity check that the name is unique.
if old, ok := m[info.displayName]; ok {
panic(fmt.Sprintf("feature %v has conflicting values (0x%x vs 0x%x)", info.displayName, old, feature))
}
m[info.displayName] = feature
}
}
return m
}()
// FeatureFromString returns the Feature associated with the given feature
// string plus a bool to indicate if it could find the feature.
func FeatureFromString(s string) (Feature, bool) {
feature, ok := reverseMap[s]
return feature, ok
}
// AllFeatures returns the full set of all possible features.
func AllFeatures() (features []Feature) {
archFlagOrder(func(f Feature) {
features = append(features, f)
})
return
}
// Subtract returns the features present in fs that are not present in other.
// If all features in fs are present in other, Subtract returns nil.
//
// This does not check for any kinds of incompatibility.
func (fs FeatureSet) Subtract(other FeatureSet) (left map[Feature]struct{}) {
for feature := range allFeatures {
thisHas := fs.HasFeature(feature)
otherHas := other.HasFeature(feature)
if thisHas && !otherHas {
if left == nil {
left = make(map[Feature]struct{})
}
left[feature] = struct{}{}
}
}
return
}
// FlagString prints out supported CPU flags.
func (fs FeatureSet) FlagString() string {
var s []string
archFlagOrder(func(feature Feature) {
if !fs.HasFeature(feature) {
return
}
info := allFeatures[feature]
if !info.shouldAppear {
return
}
s = append(s, info.displayName)
})
return strings.Join(s, " ")
}
// ErrIncompatible is returned for incompatible feature sets.
type ErrIncompatible struct {
reason string
}
// Error implements error.Error.
func (e *ErrIncompatible) Error() string {
return fmt.Sprintf("incompatible FeatureSet: %v", e.reason)
}
// CheckHostCompatible returns nil if fs is a subset of the host feature set.
func (fs FeatureSet) CheckHostCompatible() error {
hfs := HostFeatureSet()
// Check that hfs is a superset of fs.
if diff := fs.Subtract(hfs); len(diff) > 0 {
return &ErrIncompatible{
reason: fmt.Sprintf("missing features: %v", diff),
}
}
// Make arch-specific checks.
return fs.archCheckHostCompatible(hfs)
}
// +stateify savable
type hwCap struct {
// hwCap1 stores HWCAP bits exposed through the elf auxiliary vector.
hwCap1 uint64
// hwCap2 stores HWCAP2 bits exposed through the elf auxiliary vector.
hwCap2 uint64
}
// The auxiliary vector of a process on the Linux system can be read
// from /proc/self/auxv, and tags and values are stored as 8-bytes
// decimal key-value pairs on the 64-bit system.
//
// $ od -t d8 /proc/self/auxv
//
// 0000000 33 140734615224320
// 0000020 16 3219913727
// 0000040 6 4096
// 0000060 17 100
// 0000100 3 94665627353152
// 0000120 4 56
// 0000140 5 9
// 0000160 7 140425502162944
// 0000200 8 0
// 0000220 9 94665627365760
// 0000240 11 1000
// 0000260 12 1000
// 0000300 13 1000
// 0000320 14 1000
// 0000340 23 0
// 0000360 25 140734614619513
// 0000400 26 0
// 0000420 31 140734614626284
// 0000440 15 140734614619529
// 0000460 0 0
func readHWCap(auxvFilepath string) (hwCap, error) {
c := hwCap{}
if runtime.GOOS != "linux" {
// Don't try to read Linux-specific /proc files.
return c, fmt.Errorf("readHwCap only supported on linux, not %s", runtime.GOOS)
}
auxv, err := os.ReadFile(auxvFilepath)
if err != nil {
return c, fmt.Errorf("failed to read file %s: %w", auxvFilepath, err)
}
l := len(auxv) / 16
for i := 0; i < l; i++ {
tag := binary.LittleEndian.Uint64(auxv[i*16:])
val := binary.LittleEndian.Uint64(auxv[i*16+8:])
if tag == _AT_HWCAP {
c.hwCap1 = val
} else if tag == _AT_HWCAP2 {
c.hwCap2 = val
}
if (c.hwCap1 != 0) && (c.hwCap2 != 0) {
break
}
}
return c, nil
}
func initHWCap() {
c, err := readHWCap("/proc/self/auxv")
if err != nil {
log.Warningf("cpuid HWCap not initialized: %w", err)
} else {
hostFeatureSet.hwCap = c
}
}
var initOnce sync.Once
// Initialize initializes the global data structures used by this package.
// Must be called prior to using anything else in this package.
func Initialize() {
initOnce.Do(archInitialize)
}
|