1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package metric provides primitives for collecting metrics.
package metric
import (
"errors"
"fmt"
"math"
re "regexp"
"sort"
"strings"
"time"
"google.golang.org/protobuf/types/known/timestamppb"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/eventchannel"
"gvisor.dev/gvisor/pkg/log"
pb "gvisor.dev/gvisor/pkg/metric/metric_go_proto"
"gvisor.dev/gvisor/pkg/prometheus"
"gvisor.dev/gvisor/pkg/sync"
)
var (
// ErrNameInUse indicates that another metric is already defined for
// the given name.
ErrNameInUse = errors.New("metric name already in use")
// ErrInitializationDone indicates that the caller tried to create a
// new metric after initialization.
ErrInitializationDone = errors.New("metric cannot be created after initialization is complete")
// ErrFieldValueContainsIllegalChar indicates that the value of a metric
// field had an invalid character in it.
ErrFieldValueContainsIllegalChar = errors.New("metric field value contains illegal character")
// ErrFieldHasNoAllowedValues indicates that the field needs to define some
// allowed values to be a valid and useful field.
ErrFieldHasNoAllowedValues = errors.New("metric field does not define any allowed values")
// ErrTooManyFieldCombinations indicates that the number of unique
// combinations of fields is too large to support.
ErrTooManyFieldCombinations = errors.New("metric has too many combinations of allowed field values")
)
// Weirdness metric type constants.
var (
WeirdnessTypeTimeFallback = FieldValue{"time_fallback"}
WeirdnessTypePartialResult = FieldValue{"partial_result"}
WeirdnessTypeVsyscallCount = FieldValue{"vsyscall_count"}
WeirdnessTypeWatchdogStuckStartup = FieldValue{"watchdog_stuck_startup"}
WeirdnessTypeWatchdogStuckTasks = FieldValue{"watchdog_stuck_tasks"}
)
// Suspicious operations metric type constants.
var (
SuspiciousOperationsTypeOpenedWriteExecuteFile = FieldValue{"opened_write_execute_file"}
)
// List of global metrics that are used in multiple places.
var (
// WeirdnessMetric is a metric with fields created to track the number
// of weird occurrences such as time fallback, partial_result, vsyscall
// count, watchdog startup timeouts and stuck tasks.
WeirdnessMetric = MustCreateNewUint64Metric(
"/weirdness",
Uint64Metadata{
Cumulative: true,
Sync: true,
Description: "Increment for weird occurrences of problems such as time fallback, partial result, vsyscalls invoked in the sandbox, watchdog startup timeouts and stuck tasks.",
Fields: []Field{
NewField("weirdness_type",
&WeirdnessTypeTimeFallback,
&WeirdnessTypePartialResult,
&WeirdnessTypeVsyscallCount,
&WeirdnessTypeWatchdogStuckStartup,
&WeirdnessTypeWatchdogStuckTasks,
),
},
})
// SuspiciousOperationsMetric is a metric with fields created to detect
// operations such as opening an executable file to write from a gofer.
SuspiciousOperationsMetric = MustCreateNewUint64Metric(
"/suspicious_operations",
Uint64Metadata{
Cumulative: true,
Sync: true,
Description: "Increment for suspicious operations such as opening an executable file to write from a gofer.",
Fields: []Field{
NewField("operation_type",
&SuspiciousOperationsTypeOpenedWriteExecuteFile,
),
},
})
)
// InitStage is the name of a Sentry initialization stage.
type InitStage string
// List of all Sentry initialization stages.
var (
InitRestoreConfig InitStage = "restore_config"
InitExecConfig InitStage = "exec_config"
InitRestore InitStage = "restore"
InitCreateProcess InitStage = "create_process"
InitTaskStart InitStage = "task_start"
// allStages is the list of allowed stages.
allStages = []InitStage{
InitRestoreConfig,
InitExecConfig,
InitRestore,
InitCreateProcess,
InitTaskStart,
}
)
// Uint64Metric encapsulates a uint64 that represents some kind of metric to be
// monitored.
//
// Metrics are not saved across save/restore and thus reset to zero on restore.
type Uint64Metric struct {
name string
// fields is the map of field-value combination index keys to Uint64 counters.
fields []atomicbitops.Uint64
// fieldMapper is used to generate index keys for the fields array (above)
// based on field value combinations, and vice-versa.
fieldMapper fieldMapper
}
var (
// initialized indicates that all metrics are registered. allMetrics is
// immutable once initialized is true.
initialized atomicbitops.Bool
// allMetrics are the registered metrics.
allMetrics = makeMetricSet()
)
// Initialize sends a metric registration event over the event channel.
//
// Precondition:
// - All metrics are registered.
// - Initialize/Disable has not been called.
func Initialize() error {
if initialized.Load() {
return errors.New("metric.Initialize called after metric.Initialize or metric.Disable")
}
m := pb.MetricRegistration{}
for _, v := range allMetrics.uint64Metrics {
m.Metrics = append(m.Metrics, v.metadata)
}
for _, v := range allMetrics.distributionMetrics {
m.Metrics = append(m.Metrics, v.metadata)
}
m.Stages = make([]string, 0, len(allStages))
for _, s := range allStages {
m.Stages = append(m.Stages, string(s))
}
allMetrics.registration = &m
if err := eventchannel.Emit(&m); err != nil {
return fmt.Errorf("unable to emit metric initialize event: %w", err)
}
if initialized.Swap(true) {
return errors.New("raced with another call to metric.Initialize or metric.Disable")
}
return nil
}
// ErrNotYetInitialized is returned by GetMetricRegistration if metrics are not yet initialized.
var ErrNotYetInitialized = errors.New("metrics are not yet initialized")
// GetMetricRegistration returns the metric registration data for all registered metrics.
// Must be called after Initialize().
// Returns ErrNotYetInitialized if metrics are not yet initialized.
func GetMetricRegistration() (*pb.MetricRegistration, error) {
if !initialized.Load() {
return nil, ErrNotYetInitialized
}
if allMetrics.registration == nil {
return nil, errors.New("metrics are disabled")
}
return allMetrics.registration, nil
}
// Disable sends an empty metric registration event over the event channel,
// disabling metric collection.
//
// Precondition:
// - All metrics are registered.
// - Initialize/Disable has not been called.
func Disable() error {
if initialized.Load() {
return errors.New("metric.Disable called after metric.Initialize or metric.Disable")
}
m := pb.MetricRegistration{}
if err := eventchannel.Emit(&m); err != nil {
return fmt.Errorf("unable to emit empty metric registration event (metrics disabled): %w", err)
}
if initialized.Swap(true) {
return errors.New("raced with another call to metric.Initialize or metric.Disable")
}
return nil
}
// Uint64Metadata is the metadata for a uint64 metric.
type Uint64Metadata struct {
Cumulative bool
Sync bool
Unit pb.MetricMetadata_Units
Description string
Fields []Field
}
type customUint64Metric struct {
// metadata describes the metric. It is immutable.
metadata *pb.MetricMetadata
// prometheusMetric describes the metric in Prometheus format. It is immutable.
prometheusMetric *prometheus.Metric
// fields is the set of fields of the metric.
fields []Field
// value returns the current value of the metric for the given set of
// fields. It takes a variadic number of field values as argument.
value func(fieldValues ...*FieldValue) uint64
// forEachNonZero calls the given function on each possible field value of
// the metric where the metric's value is non-zero.
// The passed-in function should not allocate new memory, and may not save
// or modify `fields` directly, as the slice memory is reused across calls.
// `forEachNonZero` does not guarantee that it will be called on a
// consistent snapshot of this metric's values.
// `forEachNonZero` may be nil.
forEachNonZero func(f func(fields []*FieldValue, val uint64))
}
// FieldValue is a string that can be used as a value for a Field.
// It must be referred to by address when the Field is created and when its
// metric value is modified. This ensures that the same FieldValue reference
// is used, which in turn enables the metric code to use the address of a
// FieldValue as comparison operator, rather than doing string comparisons.
type FieldValue struct {
Value string
}
// fieldMapperMapThreshold is the number of field values after which we switch
// to using map lookups when looking up field values.
// This value was determined using benchmarks to see which is fastest.
const fieldMapperMapThreshold = 48
// Field contains the field name and allowed values for the metric which is
// used in registration of the metric.
type Field struct {
// name is the metric field name.
name string
// values is the list of values for the field.
// `values` is always populated but not always used for lookup. It depends
// on the number of allowed field values. `values` is used for lookups on
// fields with small numbers of field values.
values []*FieldValue
// valuesPtrMap is a map version of `values`. For each item in `values`,
// its pointer is mapped to its index within `values`.
// `valuesPtrMap` is used for fields with large numbers of possible values.
// For fields with small numbers of field values, it is nil.
// This map allows doing faster string matching than a normal string map,
// as it avoids the string hashing step that normal string maps need to do.
valuesPtrMap map[*FieldValue]int
}
// toProto returns the proto definition of this field, for use in metric
// metadata.
func (f Field) toProto() *pb.MetricMetadata_Field {
allowedValues := make([]string, len(f.values))
for i, v := range f.values {
allowedValues[i] = v.Value
}
return &pb.MetricMetadata_Field{
FieldName: f.name,
AllowedValues: allowedValues,
}
}
// NewField defines a new Field that can be used to break down a metric.
// The set of allowedValues must be unique strings wrapped with `FieldValue`.
// The *same* `FieldValue` pointers must be used during metric modifications.
// In practice, in most cases, this means you should declare these
// `FieldValue`s as package-level `var`s, and always use the address of these
// package-level `var`s during metric modifications.
func NewField(name string, allowedValues ...*FieldValue) Field {
// Verify that all string values have a unique value.
strMap := make(map[string]bool, len(allowedValues))
for _, v := range allowedValues {
if strMap[v.Value] {
panic(fmt.Sprintf("found duplicate field value: %q", v))
}
strMap[v.Value] = true
}
if useMap := len(allowedValues) > fieldMapperMapThreshold; !useMap {
return Field{
name: name,
values: allowedValues,
}
}
valuesPtrMap := make(map[*FieldValue]int, len(allowedValues))
for i, v := range allowedValues {
valuesPtrMap[v] = i
}
return Field{
name: name,
values: allowedValues,
valuesPtrMap: valuesPtrMap,
}
}
// fieldMapper provides multi-dimensional fields to a single unique integer key
type fieldMapper struct {
// fields is a list of Field objects, which importantly include individual
// Field names which are used to perform the keyToMultiField function; and
// allowedValues for each field type which are used to perform the lookup
// function.
fields []Field
// numFieldCombinations is the number of unique keys for all possible field
// combinations.
numFieldCombinations int
}
// newFieldMapper returns a new fieldMapper for the given set of fields.
func newFieldMapper(fields ...Field) (fieldMapper, error) {
numFieldCombinations := 1
for _, f := range fields {
// Disallow fields with no possible values. We could also ignore them
// instead, but passing in a no-allowed-values field is probably a mistake.
if len(f.values) == 0 {
return fieldMapper{nil, 0}, ErrFieldHasNoAllowedValues
}
numFieldCombinations *= len(f.values)
// Sanity check, could be useful in case someone dynamically generates too
// many fields accidentally.
if numFieldCombinations > math.MaxUint32 || numFieldCombinations < 0 {
return fieldMapper{nil, 0}, ErrTooManyFieldCombinations
}
}
return fieldMapper{
fields: fields,
numFieldCombinations: numFieldCombinations,
}, nil
}
// lookupSingle looks up a single key for a single field within fieldMapper.
// It is used internally within lookupConcat.
// It returns the updated `idx` and `remainingCombinationBucket` values.
// +checkescape:all
//
//go:nosplit
func (m fieldMapper) lookupSingle(fieldIndex int, fieldValue *FieldValue, idx, remainingCombinationBucket int) (int, int) {
field := m.fields[fieldIndex]
numValues := len(field.values)
// Are we doing a linear search?
if field.valuesPtrMap == nil {
// We scan by pointers only. This means the caller must pass the same
// FieldValue pointer as the one used in `NewField`.
for valIdx, allowedVal := range field.values {
if fieldValue == allowedVal {
remainingCombinationBucket /= numValues
idx += remainingCombinationBucket * valIdx
return idx, remainingCombinationBucket
}
}
panic("invalid field value or did not reuse the same FieldValue pointer as passed in NewField")
}
// Use map lookup instead.
// Match using FieldValue pointer.
// This avoids the string hashing step that string maps otherwise do.
valIdx, found := field.valuesPtrMap[fieldValue]
if found {
remainingCombinationBucket /= numValues
idx += remainingCombinationBucket * valIdx
return idx, remainingCombinationBucket
}
panic("invalid field value or did not reuse the same FieldValue pointer as passed in NewField")
}
// lookupConcat looks up a key within the fieldMapper where the fields are
// the concatenation of two list of fields.
// The returned key is an index that can be used to access to map created by
// makeMap().
// This *must* be called with the correct number of fields, or it will panic.
// +checkescape:all
//
//go:nosplit
func (m fieldMapper) lookupConcat(fields1, fields2 []*FieldValue) int {
if (len(fields1) + len(fields2)) != len(m.fields) {
panic("invalid field lookup depth")
}
idx := 0
remainingCombinationBucket := m.numFieldCombinations
for i, val := range fields1 {
idx, remainingCombinationBucket = m.lookupSingle(i, val, idx, remainingCombinationBucket)
}
numFields1 := len(fields1)
for i, val := range fields2 {
idx, remainingCombinationBucket = m.lookupSingle(i+numFields1, val, idx, remainingCombinationBucket)
}
return idx
}
// lookup looks up a key within the fieldMapper.
// The returned key is an index that can be used to access to map created by
// makeMap().
// This *must* be called with the correct number of fields, or it will panic.
// +checkescape:all
//
//go:nosplit
func (m fieldMapper) lookup(fields ...*FieldValue) int {
return m.lookupConcat(fields, nil)
}
// numKeys returns the total number of key-to-field-combinations mappings
// defined by the fieldMapper.
//
//go:nosplit
func (m fieldMapper) numKeys() int {
return m.numFieldCombinations
}
// makeDistributionSampleMap creates a two dimensional array, where:
// - The first level corresponds to unique field value combinations and is
// accessed using index "keys" made by fieldMapper.
// - The second level corresponds to buckets within a metric. The number of
// buckets is specified by numBuckets.
func (m fieldMapper) makeDistributionSampleMap(numBuckets int) [][]atomicbitops.Uint64 {
samples := make([][]atomicbitops.Uint64, m.numKeys())
for i := range samples {
samples[i] = make([]atomicbitops.Uint64, numBuckets)
}
return samples
}
// keyToMultiField is the reverse of lookup/lookupConcat. The returned list of
// field values corresponds to the same order of fields that were passed in to
// newFieldMapper.
func (m fieldMapper) keyToMultiField(key int) []string {
depth := len(m.fields)
if depth == 0 && key == 0 {
return nil
}
fieldValues := make([]string, depth)
remainingCombinationBucket := m.numFieldCombinations
for i := 0; i < depth; i++ {
remainingCombinationBucket /= len(m.fields[i].values)
fieldValues[i] = m.fields[i].values[key/remainingCombinationBucket].Value
key = key % remainingCombinationBucket
}
return fieldValues
}
// keyToMultiFieldInPlace does the operation described in `keyToMultiField`
// but modifies `fieldValues` in-place. It must already be of size
// `len(m.fields)`.
//
//go:nosplit
func (m fieldMapper) keyToMultiFieldInPlace(key int, fieldValues []*FieldValue) {
if len(m.fields) == 0 {
return
}
depth := len(m.fields)
remainingCombinationBucket := m.numFieldCombinations
for i := 0; i < depth; i++ {
remainingCombinationBucket /= len(m.fields[i].values)
fieldValues[i] = m.fields[i].values[key/remainingCombinationBucket]
key = key % remainingCombinationBucket
}
}
// nameToPrometheusName transforms a path-style metric name (/foo/bar) into a Prometheus-style
// metric name (foo_bar).
func nameToPrometheusName(name string) string {
return strings.ReplaceAll(strings.TrimPrefix(name, "/"), "/", "_")
}
var validMetricNameRegexp = re.MustCompile("^(?:/[_\\w]+)+$")
// verifyName verifies that the given metric name is a valid path-style metric
// name.
func verifyName(name string) error {
if !strings.HasPrefix(name, "/") {
return fmt.Errorf("metric name must start with a '/': %q", name)
}
if !validMetricNameRegexp.MatchString(name) {
return fmt.Errorf("invalid metric name: %q", name)
}
return nil
}
// RegisterCustomUint64Metric registers a metric with the given name.
//
// Register must only be called at init and will return and error if called
// after Initialized.
//
// Preconditions:
// - name must be globally unique.
// - Initialize/Disable have not been called.
// - value is expected to accept exactly len(fields) arguments.
func RegisterCustomUint64Metric(name string, metadata Uint64Metadata, value func(...*FieldValue) uint64) error {
if initialized.Load() {
return ErrInitializationDone
}
if _, ok := allMetrics.uint64Metrics[name]; ok {
return ErrNameInUse
}
if _, ok := allMetrics.distributionMetrics[name]; ok {
return ErrNameInUse
}
promType := prometheus.TypeGauge
if metadata.Cumulative {
promType = prometheus.TypeCounter
}
allMetrics.uint64Metrics[name] = customUint64Metric{
metadata: &pb.MetricMetadata{
Name: name,
PrometheusName: nameToPrometheusName(name),
Description: metadata.Description,
Cumulative: metadata.Cumulative,
Sync: metadata.Sync,
Type: pb.MetricMetadata_TYPE_UINT64,
Units: metadata.Unit,
},
prometheusMetric: &prometheus.Metric{
Name: nameToPrometheusName(name),
Help: metadata.Description,
Type: promType,
},
fields: metadata.Fields,
value: value,
}
// Metrics can exist without fields.
if l := len(metadata.Fields); l > 1 {
return fmt.Errorf("%d fields provided, must be <= 1", l)
}
for _, field := range metadata.Fields {
allMetrics.uint64Metrics[name].metadata.Fields = append(allMetrics.uint64Metrics[name].metadata.Fields, field.toProto())
}
return nil
}
// MustRegisterCustomUint64Metric calls RegisterCustomUint64Metric for metrics
// without fields and panics if it returns an error.
func MustRegisterCustomUint64Metric(name string, metadata Uint64Metadata, value func(...*FieldValue) uint64) {
if err := RegisterCustomUint64Metric(name, metadata, value); err != nil {
panic(fmt.Sprintf("Unable to register metric %q: %s", name, err))
}
}
// NewUint64Metric creates and registers a new cumulative metric with the given
// name.
//
// Metrics must be statically defined (i.e., at init).
func NewUint64Metric(name string, metadata Uint64Metadata) (*Uint64Metric, error) {
if err := verifyName(name); err != nil {
return nil, err
}
f, err := newFieldMapper(metadata.Fields...)
if err != nil {
return nil, err
}
m := Uint64Metric{
name: name,
fieldMapper: f,
fields: make([]atomicbitops.Uint64, f.numKeys()),
}
if err := RegisterCustomUint64Metric(name, metadata, m.Value); err != nil {
return nil, err
}
cm := allMetrics.uint64Metrics[name]
cm.forEachNonZero = m.forEachNonZero
allMetrics.uint64Metrics[name] = cm
return &m, nil
}
// MustCreateNewUint64Metric calls NewUint64Metric and panics if it returns
// an error.
func MustCreateNewUint64Metric(name string, metadata Uint64Metadata) *Uint64Metric {
m, err := NewUint64Metric(name, metadata)
if err != nil {
panic(fmt.Sprintf("Unable to create metric %q: %s", name, err))
}
return m
}
// Value returns the current value of the metric for the given set of fields.
// This must be called with the correct number of field values or it will panic.
//
//go:nosplit
func (m *Uint64Metric) Value(fieldValues ...*FieldValue) uint64 {
key := m.fieldMapper.lookupConcat(fieldValues, nil)
return m.fields[key].Load()
}
// forEachNonZero iterates over each field combination and calls the given
// function whenever this metric's value is not zero.
func (m *Uint64Metric) forEachNonZero(f func(fieldValues []*FieldValue, value uint64)) {
numCombinations := m.fieldMapper.numKeys()
if len(m.fieldMapper.fields) == 0 {
// Special-case the "there are no fields" case for speed and to avoid
// allocating a slice.
if val := m.fields[0].Load(); val != 0 {
f(nil, val)
}
return
}
var fieldValues []*FieldValue
for k := 0; k < numCombinations; k++ {
val := m.fields[k].Load()
if val == 0 {
continue
}
if fieldValues == nil {
fieldValues = make([]*FieldValue, len(m.fieldMapper.fields))
}
m.fieldMapper.keyToMultiFieldInPlace(k, fieldValues)
f(fieldValues, val)
}
}
// Increment increments the metric by 1.
// This must be called with the correct number of field values or it will panic.
//
//go:nosplit
func (m *Uint64Metric) Increment(fieldValues ...*FieldValue) {
m.IncrementBy(1, fieldValues...)
}
// Decrement decrements the metric by 1.
// This must be called with the correct number of field values or it will panic.
//
//go:nosplit
func (m *Uint64Metric) Decrement(fieldValues ...*FieldValue) {
m.IncrementBy(0xFFFFFFFFFFFFFFFF, fieldValues...)
}
// IncrementBy increments the metric by v.
// It is also possible to use this function to decrement the metric by using
// a two's-complement int64 representation of the negative number to add.
// This must be called with the correct number of field values or it will panic.
//
//go:nosplit
func (m *Uint64Metric) IncrementBy(v uint64, fieldValues ...*FieldValue) {
key := m.fieldMapper.lookupConcat(fieldValues, nil)
m.fields[key].Add(v)
}
// Set sets the metric to v.
// This must be called with the correct number of field values or it will panic.
//
//go:nosplit
func (m *Uint64Metric) Set(v uint64, fieldValues ...*FieldValue) {
key := m.fieldMapper.lookupConcat(fieldValues, nil)
m.fields[key].Store(v)
}
// Bucketer is an interface to bucket values into finite, distinct buckets.
type Bucketer interface {
// NumFiniteBuckets is the number of finite buckets in the distribution.
// This is only called once and never expected to return a different value.
NumFiniteBuckets() int
// LowerBound takes the index of a bucket (within [0, NumBuckets()]) and
// returns the inclusive lower bound of that bucket.
// In other words, the lowest value of `x` for which `BucketIndex(x) == i`
// should be `x = LowerBound(i)`.
// The upper bound of a bucket is the lower bound of the next bucket.
// The last bucket (with `bucketIndex == NumFiniteBuckets()`) is infinite,
// i.e. it has no upper bound (but it still has a lower bound).
LowerBound(bucketIndex int) int64
// BucketIndex takes a sample and returns the index of the bucket that the
// sample should fall into.
// Must return either:
// - A value within [0, NumBuckets() -1] if the sample falls within a
// finite bucket
// - NumBuckets() if the sample falls within the last (infinite) bucket
// - '-1' if the sample is lower than what any bucket can represent, i.e.
// the sample should be in the implicit "underflow" bucket.
// This function must be go:nosplit-compatible and have no escapes.
// +checkescape:all
BucketIndex(sample int64) int
}
// ExponentialBucketer implements Bucketer, with the first bucket starting
// with 0 as lowest bound with `Width` width, and each subsequent bucket being
// wider by a scaled exponentially-growing series, until `NumFiniteBuckets`
// buckets exist.
type ExponentialBucketer struct {
// numFinitebuckets is the total number of finite buckets in the scheme.
numFiniteBuckets int
// width is the size of the first (0-th) finite bucket.
width float64
// scale is a factor applied uniformly to the exponential growth portion
// of the bucket size.
scale float64
// growth is the exponential growth factor for finite buckets.
// The n-th bucket is `growth` times wider than the (n-1)-th bucket.
// Bucket sizes are floored, so `width` and `growth` must be large enough
// such that the second bucket is actually wider than the first after
// flooring (unless, of course, fixed-width buckets are what's desired).
growth float64
// growthLog is math.Log(growth).
growthLog float64
// maxSample is the max sample value which can be represented in a finite
// bucket.
maxSample int64
// lowerbounds is a precomputed set of lower bounds of the buckets.
// The "underflow" bucket has no lower bound, so it is not included here.
// lowerBounds[0] is the lower bound of the first finite bucket, which is
// also the upper bound of the underflow bucket.
// lowerBounds[numFiniteBuckets] is the lower bound of the overflow bucket.
lowerBounds []int64
}
// Minimum/maximum finite buckets for exponential bucketers.
const (
exponentialMinBuckets = 1
exponentialMaxBuckets = 100
)
// NewExponentialBucketer returns a new Bucketer with exponential buckets.
func NewExponentialBucketer(numFiniteBuckets int, width uint64, scale, growth float64) *ExponentialBucketer {
if numFiniteBuckets < exponentialMinBuckets || numFiniteBuckets > exponentialMaxBuckets {
panic(fmt.Sprintf("number of finite buckets must be in [%d, %d]", exponentialMinBuckets, exponentialMaxBuckets))
}
if scale < 0 || growth < 0 {
panic(fmt.Sprintf("scale and growth for exponential buckets must be >0, got scale=%f and growth=%f", scale, growth))
}
b := &ExponentialBucketer{
numFiniteBuckets: numFiniteBuckets,
width: float64(width),
scale: scale,
growth: growth,
growthLog: math.Log(growth),
lowerBounds: make([]int64, numFiniteBuckets+1),
}
b.lowerBounds[0] = 0
for i := 1; i <= numFiniteBuckets; i++ {
b.lowerBounds[i] = int64(b.width*float64(i) + b.scale*math.Pow(b.growth, float64(i-1)))
if b.lowerBounds[i] < 0 {
panic(fmt.Sprintf("encountered bucket width overflow at bucket %d", i))
}
}
b.maxSample = b.lowerBounds[numFiniteBuckets] - 1
return b
}
// NumFiniteBuckets implements Bucketer.NumFiniteBuckets.
func (b *ExponentialBucketer) NumFiniteBuckets() int {
return int(b.numFiniteBuckets)
}
// LowerBound implements Bucketer.LowerBound.
func (b *ExponentialBucketer) LowerBound(bucketIndex int) int64 {
return b.lowerBounds[bucketIndex]
}
// BucketIndex implements Bucketer.BucketIndex.
// +checkescape:all
//
//go:nosplit
func (b *ExponentialBucketer) BucketIndex(sample int64) int {
if sample < 0 {
return -1
}
if sample == 0 {
return 0
}
if sample > b.maxSample {
return b.numFiniteBuckets
}
// Do a binary search. For the number of buckets we expect to deal with in
// this code (a few dozen at most), this may be faster than computing a
// logarithm. We can't use recursion because this would violate go:nosplit.
lowIndex := 0
highIndex := b.numFiniteBuckets
for {
pivotIndex := (highIndex + lowIndex) >> 1
lowerBound := b.lowerBounds[pivotIndex]
if sample < lowerBound {
highIndex = pivotIndex
continue
}
upperBound := b.lowerBounds[pivotIndex+1]
if sample >= upperBound {
lowIndex = pivotIndex
continue
}
return pivotIndex
}
}
// Verify that ExponentialBucketer implements Bucketer.
var _ = (Bucketer)((*ExponentialBucketer)(nil))
// DistributionMetric represents a distribution of values in finite buckets.
// It also separately keeps track of min/max in order to ascertain whether the
// buckets can faithfully represent the range of values encountered in the
// distribution.
type DistributionMetric struct {
// exponentialBucketer is the bucketing scheme used for this metric.
// Because we need DistributionMetric.AddSample to be go:nosplit-compatible,
// we cannot use an interface reference here, as we would not be able to call
// it in AddSample. Instead, we need one field per Bucketer implementation,
// and we call whichever one is in use in AddSample.
exponentialBucketer *ExponentialBucketer
// metadata is the metadata about this metric. It is immutable.
metadata *pb.MetricMetadata
// prometheusMetric describes the metric in Prometheus format. It is immutable.
prometheusMetric *prometheus.Metric
// fieldsToKey converts a multi-dimensional fields to a single string to use
// as key for `samples`.
fieldsToKey fieldMapper
// samples is the number of samples that fell within each bucket.
// It is mapped by the concatenation of the fields using `fieldsToKey`.
// The value is a list of bucket sample counts, with the 0-th being the
// "underflow bucket", i.e. the bucket of samples which cannot fall into
// any bucket that the bucketer supports.
// The i-th value is the number of samples that fell into the bucketer's
// (i-1)-th finite bucket.
// The last value is the number of samples that fell into the bucketer's
// last (i.e. infinite) bucket.
samples [][]atomicbitops.Uint64
// statistics is a set of statistics about each distribution.
// It is mapped by the concatenation of the fields using `fieldsToKey`.
statistics []distributionStatistics
}
// NewDistributionMetric creates and registers a new distribution metric.
func NewDistributionMetric(name string, sync bool, bucketer Bucketer, unit pb.MetricMetadata_Units, description string, fields ...Field) (*DistributionMetric, error) {
if err := verifyName(name); err != nil {
return nil, err
}
if initialized.Load() {
return nil, ErrInitializationDone
}
if _, ok := allMetrics.uint64Metrics[name]; ok {
return nil, ErrNameInUse
}
if _, ok := allMetrics.distributionMetrics[name]; ok {
return nil, ErrNameInUse
}
var exponentialBucketer *ExponentialBucketer
if expBucketer, ok := bucketer.(*ExponentialBucketer); ok {
exponentialBucketer = expBucketer
} else {
return nil, fmt.Errorf("unsupported bucketer implementation: %T", bucketer)
}
fieldsToKey, err := newFieldMapper(fields...)
if err != nil {
return nil, err
}
numFiniteBuckets := bucketer.NumFiniteBuckets()
samples := fieldsToKey.makeDistributionSampleMap(numFiniteBuckets + 2)
protoFields := make([]*pb.MetricMetadata_Field, len(fields))
for i, f := range fields {
protoFields[i] = f.toProto()
}
lowerBounds := make([]int64, numFiniteBuckets+1)
for i := 0; i <= numFiniteBuckets; i++ {
lowerBounds[i] = bucketer.LowerBound(i)
}
allMetrics.distributionMetrics[name] = &DistributionMetric{
exponentialBucketer: exponentialBucketer,
fieldsToKey: fieldsToKey,
samples: samples,
statistics: make([]distributionStatistics, fieldsToKey.numKeys()),
metadata: &pb.MetricMetadata{
Name: name,
PrometheusName: nameToPrometheusName(name),
Description: description,
Cumulative: false,
Sync: sync,
Type: pb.MetricMetadata_TYPE_DISTRIBUTION,
Units: unit,
Fields: protoFields,
DistributionBucketLowerBounds: lowerBounds,
},
prometheusMetric: &prometheus.Metric{
Name: nameToPrometheusName(name),
Type: prometheus.TypeHistogram,
Help: description,
},
}
return allMetrics.distributionMetrics[name], nil
}
// MustCreateNewDistributionMetric creates and registers a distribution metric.
// If an error occurs, it panics.
func MustCreateNewDistributionMetric(name string, sync bool, bucketer Bucketer, unit pb.MetricMetadata_Units, description string, fields ...Field) *DistributionMetric {
distrib, err := NewDistributionMetric(name, sync, bucketer, unit, description, fields...)
if err != nil {
panic(err)
}
return distrib
}
// distributionStatistics is a set of useful statistics for a distribution.
// As metric update operations must be non-blocking, this uses a bunch of
// atomic numbers rather than a mutex.
type distributionStatistics struct {
// sampleCount is the total number of samples.
sampleCount atomicbitops.Uint64
// sampleSum is the sum of samples.
sampleSum atomicbitops.Int64
// sumOfSquaredDeviations is the running sum of squared deviations from the
// mean of each sample.
// This quantity is useful as part of Welford's online algorithm:
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
sumOfSquaredDeviations atomicbitops.Float64
// min and max are the minimum and maximum samples ever recorded.
min, max atomicbitops.Int64
}
// Update updates the distribution statistics with the given sample.
// This function must be non-blocking, i.e. no mutexes.
// As a result, it is not entirely accurate when it races with itself,
// though the imprecision should be fairly small and should not practically
// matter for distributions with more than a handful of records.
func (s *distributionStatistics) Update(sample int64) {
newSampleCount := s.sampleCount.Add(1)
newSampleSum := s.sampleSum.Add(sample)
if newSampleCount > 1 {
// Not the first sample of the distribution.
floatSample := float64(sample)
oldMean := float64(newSampleSum-sample) / float64(newSampleCount-1)
newMean := float64(newSampleSum) / float64(newSampleCount)
devSquared := (floatSample - oldMean) * (floatSample - newMean)
s.sumOfSquaredDeviations.Add(devSquared)
// Update min and max.
// We optimistically load racily here in the hope that it passes the CaS
// operation. If it doesn't, we'll load it atomically, so this is not a
// race.
sync.RaceDisable()
for oldMin := s.min.RacyLoad(); sample < oldMin && !s.min.CompareAndSwap(oldMin, sample); oldMin = s.min.Load() {
}
for oldMax := s.max.RacyLoad(); sample > oldMax && !s.max.CompareAndSwap(oldMax, sample); oldMax = s.max.Load() {
}
sync.RaceEnable()
} else {
// We are the first sample, so set the min and max to the current sample.
// See above for why disabling race detection is safe here as well.
sync.RaceDisable()
if !s.min.CompareAndSwap(0, sample) {
for oldMin := s.min.RacyLoad(); sample < oldMin && !s.min.CompareAndSwap(oldMin, sample); oldMin = s.min.Load() {
}
}
if !s.max.CompareAndSwap(0, sample) {
for oldMax := s.max.RacyLoad(); sample > oldMax && !s.max.CompareAndSwap(oldMax, sample); oldMax = s.max.Load() {
}
}
sync.RaceEnable()
}
}
// distributionStatisticsSnapshot an atomically-loaded snapshot of
// distributionStatistics.
type distributionStatisticsSnapshot struct {
// sampleCount is the total number of samples.
sampleCount uint64
// sampleSum is the sum of samples.
sampleSum int64
// sumOfSquaredDeviations is the running sum of squared deviations from the
// mean of each sample.
// This quantity is useful as part of Welford's online algorithm:
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
sumOfSquaredDeviations float64
// min and max are the minimum and maximum samples ever recorded.
min, max int64
}
// Load generates a consistent snapshot of the distribution statistics.
func (s *distributionStatistics) Load() distributionStatisticsSnapshot {
// We start out reading things racily, but will verify each of them
// atomically later in this function, so this is OK. Disable the race
// checker for this part of the function.
sync.RaceDisable()
snapshot := distributionStatisticsSnapshot{
sampleCount: s.sampleCount.RacyLoad(),
sampleSum: s.sampleSum.RacyLoad(),
sumOfSquaredDeviations: s.sumOfSquaredDeviations.RacyLoad(),
min: s.min.RacyLoad(),
max: s.max.RacyLoad(),
}
sync.RaceEnable()
// Now verify that we loaded an atomic snapshot of the statistics.
// This relies on the fact that each update should at least change the
// count statistic, so we should be able to tell if anything changed based
// on whether we have an exact match with the currently-loaded values.
// If not, we reload that value and try again until all is consistent.
retry:
if sampleCount := s.sampleCount.Load(); sampleCount != snapshot.sampleCount {
snapshot.sampleCount = sampleCount
goto retry
}
if sampleSum := s.sampleSum.Load(); sampleSum != snapshot.sampleSum {
snapshot.sampleSum = sampleSum
goto retry
}
if ssd := s.sumOfSquaredDeviations.Load(); ssd != snapshot.sumOfSquaredDeviations {
snapshot.sumOfSquaredDeviations = ssd
goto retry
}
if min := s.min.Load(); min != snapshot.min {
snapshot.min = min
goto retry
}
if max := s.max.Load(); max != snapshot.max {
snapshot.max = max
goto retry
}
return snapshot
}
// AddSample adds a sample to the distribution.
// This *must* be called with the correct number of fields, or it will panic.
// +checkescape:all
//
//go:nosplit
func (d *DistributionMetric) AddSample(sample int64, fields ...*FieldValue) {
d.addSampleByKey(sample, d.fieldsToKey.lookup(fields...))
}
// addSampleByKey works like AddSample, with the field key already known.
// +checkescape:all
//
//go:nosplit
func (d *DistributionMetric) addSampleByKey(sample int64, key int) {
bucket := d.exponentialBucketer.BucketIndex(sample)
d.samples[key][bucket+1].Add(1)
d.statistics[key].Update(sample)
}
// Minimum number of buckets for NewDurationBucket.
const durationMinBuckets = 3
// NewDurationBucketer returns a Bucketer well-suited for measuring durations in
// nanoseconds. Useful for NewTimerMetric.
// minDuration and maxDuration are conservative estimates of the minimum and
// maximum durations expected to be accurately measured by the Bucketer.
func NewDurationBucketer(numFiniteBuckets int, minDuration, maxDuration time.Duration) Bucketer {
if numFiniteBuckets < durationMinBuckets {
panic(fmt.Sprintf("duration bucketer must have at least %d buckets, got %d", durationMinBuckets, numFiniteBuckets))
}
minNs := minDuration.Nanoseconds()
exponentCoversNs := float64(maxDuration.Nanoseconds()-int64(numFiniteBuckets-durationMinBuckets)*minNs) / float64(minNs)
exponent := math.Log(exponentCoversNs) / math.Log(float64(numFiniteBuckets-durationMinBuckets))
minNs = int64(float64(minNs) / exponent)
return NewExponentialBucketer(numFiniteBuckets, uint64(minNs), float64(minNs), exponent)
}
// TimerMetric wraps a distribution metric with convenience functions for
// latency measurements, which is a popular specialization of distribution
// metrics.
type TimerMetric struct {
DistributionMetric
}
// NewTimerMetric provides a convenient way to measure latencies.
// The arguments are the same as `NewDistributionMetric`, except:
// - `nanoBucketer`: Same as `NewDistribution`'s `bucketer`, expected to hold
// durations in nanoseconds. Adjust parameters accordingly.
// NewDurationBucketer may be helpful here.
func NewTimerMetric(name string, nanoBucketer Bucketer, description string, fields ...Field) (*TimerMetric, error) {
distrib, err := NewDistributionMetric(name, false, nanoBucketer, pb.MetricMetadata_UNITS_NANOSECONDS, description, fields...)
if err != nil {
return nil, err
}
return &TimerMetric{
DistributionMetric: *distrib,
}, nil
}
// MustCreateNewTimerMetric creates and registers a timer metric.
// If an error occurs, it panics.
func MustCreateNewTimerMetric(name string, nanoBucketer Bucketer, description string, fields ...Field) *TimerMetric {
timer, err := NewTimerMetric(name, nanoBucketer, description, fields...)
if err != nil {
panic(err)
}
return timer
}
// TimedOperation is used by TimerMetric to keep track of the time elapsed
// between an operation starting and stopping.
type TimedOperation struct {
// metric is a reference to the timer metric for the operation.
metric *TimerMetric
// partialFields is a prefix of the fields used in this operation.
// The rest of the fields is provided in TimedOperation.Finish.
partialFields []*FieldValue
// startedNs is the number of nanoseconds measured in TimerMetric.Start().
startedNs int64
}
// Start starts a timer measurement for the given combination of fields.
// It returns a TimedOperation which can be passed around as necessary to
// measure the duration of the operation.
// Once the operation is finished, call Finish on the TimedOperation.
// The fields passed to Start may be partially specified; if so, the remaining
// fields must be passed to TimedOperation.Finish. This is useful for cases
// where which path an operation took is only known after it happens. This
// path can be part of the fields passed to Finish.
// +checkescape:all
//
//go:nosplit
func (t *TimerMetric) Start(fields ...*FieldValue) TimedOperation {
return TimedOperation{
metric: t,
partialFields: fields,
startedNs: CheapNowNano(),
}
}
// Finish marks an operation as finished and records its duration.
// `extraFields` is the rest of the fields appended to the fields passed to
// `TimerMetric.Start`. The concatenation of these two must be the exact
// number of fields that the underlying metric has.
// +checkescape:all
//
//go:nosplit
func (o TimedOperation) Finish(extraFields ...*FieldValue) {
ended := CheapNowNano()
fieldKey := o.metric.fieldsToKey.lookupConcat(o.partialFields, extraFields)
o.metric.addSampleByKey(ended-o.startedNs, fieldKey)
}
// stageTiming contains timing data for an initialization stage.
type stageTiming struct {
stage InitStage
started time.Time
// ended is the zero time when the stage has not ended yet.
ended time.Time
}
// inProgress returns whether this stage hasn't ended yet.
func (s stageTiming) inProgress() bool {
return !s.started.IsZero() && s.ended.IsZero()
}
// metricSet holds metric data.
type metricSet struct {
// Metric registration data for all the metrics below.
registration *pb.MetricRegistration
// Map of uint64 metrics.
uint64Metrics map[string]customUint64Metric
// Map of distribution metrics.
distributionMetrics map[string]*DistributionMetric
// mu protects the fields below.
mu sync.RWMutex
// Information about the stages reached by the Sentry. Only appended to, so
// reading a shallow copy of the slice header concurrently is safe.
finished []stageTiming
// The current stage in progress.
currentStage stageTiming
}
// makeMetricSet returns a new metricSet.
func makeMetricSet() *metricSet {
return &metricSet{
uint64Metrics: make(map[string]customUint64Metric),
distributionMetrics: make(map[string]*DistributionMetric),
finished: make([]stageTiming, 0, len(allStages)),
}
}
// Values returns a snapshot of all values in m.
func (m *metricSet) Values() metricValues {
m.mu.Lock()
stages := m.finished[:]
m.mu.Unlock()
vals := metricValues{
uint64Metrics: make(map[string]any, len(m.uint64Metrics)),
distributionMetrics: make(map[string][][]uint64, len(m.distributionMetrics)),
distributionTotalSamples: make(map[string][]uint64, len(m.distributionMetrics)),
distributionStatistics: make(map[string][]distributionStatisticsSnapshot, len(m.distributionMetrics)),
stages: stages,
}
for k, v := range m.uint64Metrics {
fields := v.fields
switch len(fields) {
case 0:
vals.uint64Metrics[k] = v.value()
case 1:
fieldsMap := make(map[*FieldValue]uint64)
if v.forEachNonZero != nil {
v.forEachNonZero(func(fieldValues []*FieldValue, val uint64) {
fieldsMap[fieldValues[0]] = val
})
} else {
for _, fieldValue := range fields[0].values {
fieldsMap[fieldValue] = v.value(fieldValue)
}
}
vals.uint64Metrics[k] = fieldsMap
default:
panic(fmt.Sprintf("Unsupported number of metric fields: %d", len(fields)))
}
}
for name, metric := range m.distributionMetrics {
fieldKeysToValues := make([][]uint64, len(metric.samples))
fieldKeysToTotalSamples := make([]uint64, len(metric.samples))
fieldKeysToStatistics := make([]distributionStatisticsSnapshot, len(metric.samples))
for fieldKey, samples := range metric.samples {
samplesSnapshot := snapshotDistribution(samples)
totalSamples := uint64(0)
for _, bucket := range samplesSnapshot {
totalSamples += bucket
}
if totalSamples == 0 {
// No samples recorded for this combination of field, so leave
// the maps for this fieldKey as nil. This lessens the memory cost
// of distributions with unused field combinations.
fieldKeysToTotalSamples[fieldKey] = 0
fieldKeysToStatistics[fieldKey] = distributionStatisticsSnapshot{}
fieldKeysToValues[fieldKey] = nil
} else {
fieldKeysToTotalSamples[fieldKey] = totalSamples
fieldKeysToStatistics[fieldKey] = metric.statistics[fieldKey].Load()
fieldKeysToValues[fieldKey] = samplesSnapshot
}
}
vals.distributionMetrics[name] = fieldKeysToValues
vals.distributionTotalSamples[name] = fieldKeysToTotalSamples
vals.distributionStatistics[name] = fieldKeysToStatistics
}
return vals
}
// metricValues contains a copy of the values of all metrics.
type metricValues struct {
// uint64Metrics is a map of uint64 metrics,
// with key as metric name. Value can be either uint64, or map[*FieldValue]uint64
// to support metrics with one field.
uint64Metrics map[string]any
// distributionMetrics is a map of distribution metrics.
// The first key level is the metric name.
// The second key level is an index ID corresponding to the combination of
// field values. The index is decoded to field strings using keyToMultiField.
// The slice value is the number of samples in each bucket of the
// distribution, with the first (0-th) element being the underflow bucket
// and the last element being the "infinite" (overflow) bucket.
// The slice value may also be nil for field combinations with no samples.
// This saves memory by avoiding storing anything for unused field
// combinations.
distributionMetrics map[string][][]uint64
// distributionTotalSamples is the total number of samples for each
// distribution metric and field values.
// It allows performing a quick diff between snapshots without having to
// iterate over all the buckets individually, so that distributions with
// no new samples are not retransmitted.
distributionTotalSamples map[string][]uint64
// distributionStatistics is a set of statistics about the samples.
distributionStatistics map[string][]distributionStatisticsSnapshot
// Information on when initialization stages were reached. Does not include
// the currently-ongoing stage, if any.
stages []stageTiming
}
var (
// emitMu protects metricsAtLastEmit and ensures that all emitted
// metrics are strongly ordered (older metrics are never emitted after
// newer metrics).
emitMu sync.Mutex
// metricsAtLastEmit contains the state of the metrics at the last emit event.
metricsAtLastEmit metricValues
)
// EmitMetricUpdate emits a MetricUpdate over the event channel.
//
// Only metrics that have changed since the last call are emitted.
//
// EmitMetricUpdate is thread-safe.
//
// Preconditions:
// - Initialize has been called.
func EmitMetricUpdate() {
emitMu.Lock()
defer emitMu.Unlock()
snapshot := allMetrics.Values()
m := pb.MetricUpdate{}
// On the first call metricsAtLastEmit will be empty. Include all
// metrics then.
for k, v := range snapshot.uint64Metrics {
prev, ok := metricsAtLastEmit.uint64Metrics[k]
switch t := v.(type) {
case uint64:
// Metric exists and value did not change.
if ok && prev.(uint64) == t {
continue
}
m.Metrics = append(m.Metrics, &pb.MetricValue{
Name: k,
Value: &pb.MetricValue_Uint64Value{Uint64Value: t},
})
case map[*FieldValue]uint64:
for fieldValue, metricValue := range t {
// Emit data on the first call only if the field
// value has been incremented. For all other
// calls, emit data if the field value has been
// changed from the previous emit.
if (!ok && metricValue == 0) || (ok && prev.(map[*FieldValue]uint64)[fieldValue] == metricValue) {
continue
}
m.Metrics = append(m.Metrics, &pb.MetricValue{
Name: k,
FieldValues: []string{fieldValue.Value},
Value: &pb.MetricValue_Uint64Value{Uint64Value: metricValue},
})
}
default:
panic(fmt.Sprintf("unsupported type in uint64Metrics: %T (%v)", v, v))
}
}
for name, dist := range snapshot.distributionTotalSamples {
prev, ok := metricsAtLastEmit.distributionTotalSamples[name]
for fieldKey, currentTotal := range dist {
if currentTotal == 0 {
continue
}
if ok {
if prevTotal := prev[fieldKey]; prevTotal == currentTotal {
continue
}
}
oldSamples := metricsAtLastEmit.distributionMetrics[name]
var newSamples []uint64
if oldSamples != nil && oldSamples[fieldKey] != nil {
currentSamples := snapshot.distributionMetrics[name][fieldKey]
numBuckets := len(currentSamples)
newSamples = make([]uint64, numBuckets)
for i := 0; i < numBuckets; i++ {
newSamples[i] = currentSamples[i] - oldSamples[fieldKey][i]
}
} else {
// oldSamples == nil means that the previous snapshot has no samples.
// This means the delta is the current number of samples, no need for
// a copy.
newSamples = snapshot.distributionMetrics[name][fieldKey]
}
m.Metrics = append(m.Metrics, &pb.MetricValue{
Name: name,
FieldValues: allMetrics.distributionMetrics[name].fieldsToKey.keyToMultiField(fieldKey),
Value: &pb.MetricValue_DistributionValue{
DistributionValue: &pb.Samples{
NewSamples: newSamples,
},
},
})
}
}
for s := len(metricsAtLastEmit.stages); s < len(snapshot.stages); s++ {
newStage := snapshot.stages[s]
m.StageTiming = append(m.StageTiming, &pb.StageTiming{
Stage: string(newStage.stage),
Started: ×tamppb.Timestamp{
Seconds: newStage.started.Unix(),
Nanos: int32(newStage.started.Nanosecond()),
},
Ended: ×tamppb.Timestamp{
Seconds: newStage.ended.Unix(),
Nanos: int32(newStage.ended.Nanosecond()),
},
})
}
metricsAtLastEmit = snapshot
if len(m.Metrics) == 0 && len(m.StageTiming) == 0 {
return
}
if log.IsLogging(log.Debug) {
sort.Slice(m.Metrics, func(i, j int) bool {
return m.Metrics[i].GetName() < m.Metrics[j].GetName()
})
log.Debugf("Emitting metrics:")
for _, metric := range m.Metrics {
var valueStr string
switch metric.GetValue().(type) {
case *pb.MetricValue_Uint64Value:
valueStr = fmt.Sprintf("%d", metric.GetUint64Value())
case *pb.MetricValue_DistributionValue:
valueStr = fmt.Sprintf("new distribution samples: %+v", metric.GetDistributionValue())
default:
valueStr = "unsupported type"
}
if len(metric.GetFieldValues()) > 0 {
var foundMetadata *pb.MetricMetadata
if metricObj, found := allMetrics.uint64Metrics[metric.GetName()]; found {
foundMetadata = metricObj.metadata
} else if metricObj, found := allMetrics.distributionMetrics[metric.GetName()]; found {
foundMetadata = metricObj.metadata
}
if foundMetadata == nil || len(foundMetadata.GetFields()) != len(metric.GetFieldValues()) {
// This should never happen, but if it somehow does, we don't want to crash here, as
// this is debug output that may already be printed in the context of panic.
log.Debugf("%s%v (cannot find metric definition!): %s", metric.GetName(), metric.GetFieldValues(), valueStr)
continue
}
var sb strings.Builder
for i, fieldValue := range metric.GetFieldValues() {
if i > 0 {
sb.WriteRune(',')
}
sb.WriteString(foundMetadata.GetFields()[i].GetFieldName())
sb.WriteRune('=')
sb.WriteString(fieldValue)
}
log.Debugf(" Metric %s[%s]: %s", metric.GetName(), sb.String(), valueStr)
} else {
log.Debugf(" Metric %s: %s", metric.GetName(), valueStr)
}
}
for _, stage := range m.StageTiming {
duration := time.Duration(stage.Ended.Seconds-stage.Started.Seconds)*time.Second + time.Duration(stage.Ended.Nanos-stage.Started.Nanos)*time.Nanosecond
log.Debugf("Stage %s took %v", stage.GetStage(), duration)
}
}
if err := eventchannel.Emit(&m); err != nil {
log.Warningf("Unable to emit metrics: %s", err)
}
}
// SnapshotOptions controls how snapshots are exported in GetSnapshot.
type SnapshotOptions struct {
// Filter, if set, should return true for metrics that should be written to
// the snapshot. If unset, all metrics are written to the snapshot.
Filter func(*prometheus.Metric) bool
}
// GetSnapshot returns a Prometheus snapshot of the metric data.
// Returns ErrNotYetInitialized if metrics have not yet been initialized.
func GetSnapshot(options SnapshotOptions) (*prometheus.Snapshot, error) {
if !initialized.Load() {
return nil, ErrNotYetInitialized
}
values := allMetrics.Values()
snapshot := prometheus.NewSnapshot()
for k, v := range values.uint64Metrics {
m := allMetrics.uint64Metrics[k]
if options.Filter != nil && !options.Filter(m.prometheusMetric) {
continue
}
switch t := v.(type) {
case uint64:
if m.metadata.GetCumulative() && t == 0 {
// Zero-valued counter, ignore.
continue
}
snapshot.Add(prometheus.NewIntData(m.prometheusMetric, int64(t)))
case map[*FieldValue]uint64:
for fieldValue, metricValue := range t {
if m.metadata.GetCumulative() && metricValue == 0 {
// Zero-valued counter, ignore.
continue
}
snapshot.Add(prometheus.LabeledIntData(m.prometheusMetric, map[string]string{
// uint64 metrics currently only support at most one field name.
m.metadata.Fields[0].GetFieldName(): fieldValue.Value,
}, int64(metricValue)))
}
default:
panic(fmt.Sprintf("unsupported type in uint64Metrics: %T (%v)", v, v))
}
}
for k, dists := range values.distributionTotalSamples {
m := allMetrics.distributionMetrics[k]
if options.Filter != nil && !options.Filter(m.prometheusMetric) {
continue
}
distributionSamples := values.distributionMetrics[k]
numFiniteBuckets := m.exponentialBucketer.NumFiniteBuckets()
statistics := values.distributionStatistics[k]
for fieldKey := range dists {
var labels map[string]string
if numFields := m.fieldsToKey.numKeys(); numFields > 0 {
labels = make(map[string]string, numFields)
for fieldIndex, field := range m.fieldsToKey.keyToMultiField(fieldKey) {
labels[m.metadata.Fields[fieldIndex].GetFieldName()] = field
}
}
currentSamples := distributionSamples[fieldKey]
buckets := make([]prometheus.Bucket, numFiniteBuckets+2)
samplesForFieldKey := uint64(0)
for b := 0; b < numFiniteBuckets+2; b++ {
var upperBound prometheus.Number
if b == numFiniteBuckets+1 {
upperBound = prometheus.Number{Float: math.Inf(1)} // Overflow bucket.
} else {
upperBound = prometheus.Number{Int: m.exponentialBucketer.LowerBound(b)}
}
samples := uint64(0)
if currentSamples != nil {
samples = currentSamples[b]
samplesForFieldKey += samples
}
buckets[b] = prometheus.Bucket{
Samples: samples,
UpperBound: upperBound,
}
}
if samplesForFieldKey == 0 {
// Zero-valued distribution (no samples in any bucket for this field
// combination). Ignore.
continue
}
snapshot.Add(&prometheus.Data{
Metric: m.prometheusMetric,
Labels: labels,
HistogramValue: &prometheus.Histogram{
Total: prometheus.Number{Int: statistics[fieldKey].sampleSum},
SumOfSquaredDeviations: prometheus.Number{Float: statistics[fieldKey].sumOfSquaredDeviations},
Min: prometheus.Number{Int: statistics[fieldKey].min},
Max: prometheus.Number{Int: statistics[fieldKey].max},
Buckets: buckets,
},
})
}
}
return snapshot, nil
}
// StartStage should be called when an initialization stage is started.
// It returns a function that must be called to indicate that the stage ended.
// Alternatively, future calls to StartStage will implicitly indicate that the
// previous stage ended.
// Stage information will be emitted in the next call to EmitMetricUpdate after
// a stage has ended.
//
// This function may (and is expected to) be called prior to final
// initialization of this metric library, as it has to capture early stages
// of Sentry initialization.
func StartStage(stage InitStage) func() {
now := time.Now()
allMetrics.mu.Lock()
defer allMetrics.mu.Unlock()
if allMetrics.currentStage.inProgress() {
endStage(now)
}
allMetrics.currentStage.stage = stage
allMetrics.currentStage.started = now
return func() {
now := time.Now()
allMetrics.mu.Lock()
defer allMetrics.mu.Unlock()
// The current stage may have been ended by another call to StartStage, so
// double-check prior to clearing the current stage.
if allMetrics.currentStage.inProgress() && allMetrics.currentStage.stage == stage {
endStage(now)
}
}
}
// endStage marks allMetrics.currentStage as ended, adding it to the list of
// finished stages. It assumes allMetrics.mu is locked.
func endStage(when time.Time) {
allMetrics.currentStage.ended = when
allMetrics.finished = append(allMetrics.finished, allMetrics.currentStage)
allMetrics.currentStage = stageTiming{}
}
|