1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build amd64
// +build amd64
package ring0
import (
"encoding/binary"
"reflect"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
)
// HaltAndWriteFSBase halts execution. On resume, it sets FS_BASE from the
// value in regs.
func HaltAndWriteFSBase(regs *arch.Registers)
// init initializes architecture-specific state.
func (k *Kernel) init(maxCPUs int) {
entrySize := reflect.TypeOf(kernelEntry{}).Size()
var (
entries []kernelEntry
padding = 1
)
for {
entries = make([]kernelEntry, maxCPUs+padding-1)
totalSize := entrySize * uintptr(maxCPUs+padding-1)
addr := reflect.ValueOf(&entries[0]).Pointer()
if addr&(hostarch.PageSize-1) == 0 && totalSize >= hostarch.PageSize {
// The runtime forces power-of-2 alignment for allocations, and we are therefore
// safe once the first address is aligned and the chunk is at least a full page.
break
}
padding = padding << 1
}
k.cpuEntries = entries
k.globalIDT = &idt64{}
if reflect.TypeOf(idt64{}).Size() != hostarch.PageSize {
panic("Size of globalIDT should be PageSize")
}
if reflect.ValueOf(k.globalIDT).Pointer()&(hostarch.PageSize-1) != 0 {
panic("Allocated globalIDT should be page aligned")
}
// Setup the IDT, which is uniform.
for v, handler := range handlers {
// Allow Breakpoint and Overflow to be called from all
// privilege levels.
dpl := 0
if v == Breakpoint || v == Overflow {
dpl = 3
}
// Note that we set all traps to use the interrupt stack, this
// is defined below when setting up the TSS.
k.globalIDT[v].setInterrupt(Kcode, uint64(kernelFunc(handler)), dpl, 1 /* ist */)
}
}
// EntryRegions returns the set of kernel entry regions (must be mapped).
func (k *Kernel) EntryRegions() map[uintptr]uintptr {
regions := make(map[uintptr]uintptr)
addr := reflect.ValueOf(&k.cpuEntries[0]).Pointer()
size := reflect.TypeOf(kernelEntry{}).Size() * uintptr(len(k.cpuEntries))
end, _ := hostarch.Addr(addr + size).RoundUp()
regions[uintptr(hostarch.Addr(addr).RoundDown())] = uintptr(end)
addr = reflect.ValueOf(k.globalIDT).Pointer()
size = reflect.TypeOf(idt64{}).Size()
end, _ = hostarch.Addr(addr + size).RoundUp()
regions[uintptr(hostarch.Addr(addr).RoundDown())] = uintptr(end)
return regions
}
// init initializes architecture-specific state.
func (c *CPU) init(cpuID int) {
c.kernelEntry = &c.kernel.cpuEntries[cpuID]
c.cpuSelf = c
// Null segment.
c.gdt[0].setNull()
// Kernel & user segments.
c.gdt[segKcode] = KernelCodeSegment
c.gdt[segKdata] = KernelDataSegment
c.gdt[segUcode32] = UserCodeSegment32
c.gdt[segUdata] = UserDataSegment
c.gdt[segUcode64] = UserCodeSegment64
// The task segment, this spans two entries.
tssBase, tssLimit, _ := c.TSS()
c.gdt[segTss].set(
uint32(tssBase),
uint32(tssLimit),
0, // Privilege level zero.
SegmentDescriptorPresent|
SegmentDescriptorAccess|
SegmentDescriptorWrite|
SegmentDescriptorExecute)
c.gdt[segTssHi].setHi(uint32((tssBase) >> 32))
// Set the kernel stack pointer in the TSS (virtual address).
stackAddr := c.StackTop()
c.stackTop = stackAddr
c.tss.rsp0Lo = uint32(stackAddr)
c.tss.rsp0Hi = uint32(stackAddr >> 32)
c.tss.ist1Lo = uint32(stackAddr)
c.tss.ist1Hi = uint32(stackAddr >> 32)
// Set the I/O bitmap base address beyond the last byte in the TSS
// to block access to the entire I/O address range.
//
// From section 18.5.2 "I/O Permission Bit Map" from Intel SDM vol1:
// I/O addresses not spanned by the map are treated as if they had set
// bits in the map.
c.tss.ioPerm = tssLimit + 1
// Permanently set the kernel segments.
c.registers.Cs = uint64(Kcode)
c.registers.Ds = uint64(Kdata)
c.registers.Es = uint64(Kdata)
c.registers.Ss = uint64(Kdata)
c.registers.Fs = uint64(Kdata)
c.registers.Gs = uint64(Kdata)
// Set mandatory flags.
c.registers.Eflags = KernelFlagsSet
c.hasXSAVE = hasXSAVE
c.hasXSAVEOPT = hasXSAVEOPT
c.hasFSGSBASE = hasFSGSBASE
}
// StackTop returns the kernel's stack address.
//
//go:nosplit
func (c *CPU) StackTop() uint64 {
return uint64(kernelAddr(&c.stack[0])) + uint64(len(c.stack))
}
// IDT returns the CPU's IDT base and limit.
//
//go:nosplit
func (c *CPU) IDT() (uint64, uint16) {
return uint64(kernelAddr(&c.kernel.globalIDT[0])), uint16(binary.Size(&c.kernel.globalIDT) - 1)
}
// GDT returns the CPU's GDT base and limit.
//
//go:nosplit
func (c *CPU) GDT() (uint64, uint16) {
return uint64(kernelAddr(&c.gdt[0])), uint16(8*segLast - 1)
}
// TSS returns the CPU's TSS base, limit and value.
//
//go:nosplit
func (c *CPU) TSS() (uint64, uint16, *SegmentDescriptor) {
return uint64(kernelAddr(&c.tss)), uint16(binary.Size(&c.tss) - 1), &c.gdt[segTss]
}
// CR0 returns the CPU's CR0 value.
//
//go:nosplit
func (c *CPU) CR0() uint64 {
return _CR0_PE | _CR0_PG | _CR0_AM | _CR0_ET | _CR0_NE
}
// CR4 returns the CPU's CR4 value.
//
//go:nosplit
func (c *CPU) CR4() uint64 {
cr4 := uint64(_CR4_PAE | _CR4_PSE | _CR4_OSFXSR | _CR4_OSXMMEXCPT)
if hasPCID {
cr4 |= _CR4_PCIDE
}
if hasXSAVE {
cr4 |= _CR4_OSXSAVE
}
if hasSMEP {
cr4 |= _CR4_SMEP
}
if hasSMAP {
cr4 |= _CR4_SMAP
}
if hasFSGSBASE {
cr4 |= _CR4_FSGSBASE
}
return cr4
}
// EFER returns the CPU's EFER value.
//
//go:nosplit
func (c *CPU) EFER() uint64 {
return _EFER_LME | _EFER_LMA | _EFER_SCE | _EFER_NX
}
// IsCanonical indicates whether addr is canonical per the amd64 spec.
//
//go:nosplit
func IsCanonical(addr uint64) bool {
return addr <= 0x00007fffffffffff || addr >= 0xffff800000000000
}
// SwitchToUser performs either a sysret or an iret.
//
// The return value is the vector that interrupted execution.
//
// This function will not split the stack. Callers will probably want to call
// runtime.entersyscall (and pair with a call to runtime.exitsyscall) prior to
// calling this function.
//
// When this is done, this region is quite sensitive to things like system
// calls. After calling entersyscall, any memory used must have been allocated
// and no function calls without go:nosplit are permitted. Any calls made here
// are protected appropriately (e.g. IsCanonical and CR3).
//
// Also note that this function transitively depends on the compiler generating
// code that uses IP-relative addressing inside of absolute addresses. That's
// the case for amd64, but may not be the case for other architectures.
//
// Precondition: the Rip, Rsp, Fs and Gs registers must be canonical.
//
// +checkescape:all
//
//go:nosplit
func (c *CPU) SwitchToUser(switchOpts SwitchOpts) (vector Vector) {
userCR3 := switchOpts.PageTables.CR3(!switchOpts.Flush, switchOpts.UserPCID)
c.kernelCR3 = uintptr(c.kernel.PageTables.CR3(true, switchOpts.KernelPCID))
// Sanitize registers.
regs := switchOpts.Registers
regs.Eflags &= ^uint64(UserFlagsClear)
regs.Eflags |= UserFlagsSet
regs.Cs = uint64(Ucode64) // Required for iret.
regs.Ss = uint64(Udata) // Ditto.
// Perform the switch.
needIRET := uint64(0)
if switchOpts.FullRestore {
needIRET = 1
}
vector = doSwitchToUser(c, regs, switchOpts.FloatingPointState.BytePointer(), userCR3, needIRET) // escapes: no.
return
}
func doSwitchToUser(
cpu *CPU, // +0(FP)
regs *arch.Registers, // +8(FP)
fpState *byte, // +16(FP)
userCR3 uint64, // +24(FP)
needIRET uint64) Vector // +32(FP), +40(FP)
// startGo is the CPU entrypoint.
//
// This is called from the start asm stub (see entry_amd64.go); on return the
// registers in c.registers will be restored (not segments).
//
// Note that any code written in Go should adhere to Go expected environment:
// - Initialized floating point state (required for optimizations using
// floating point instructions).
// - Go TLS in FS_BASE (this is required by splittable functions, calls into
// the runtime, calls to assembly functions (Go 1.17+ ABI wrappers access
// TLS)).
//
//go:nosplit
func startGo(c *CPU) {
// Save per-cpu.
writeGS(kernelAddr(c.kernelEntry))
//
// TODO(mpratt): Note that per the note above, this should be done
// before entering Go code. However for simplicity we leave it here for
// now, since the small critical sections with undefined FPU state
// should only contain very limited use of floating point instructions
// (notably, use of XMM15 as a zero register).
fninit()
// Need to sync XCR0 with the host, because xsave and xrstor can be
// called from different contexts.
if hasXSAVE {
// Exclude MPX bits. MPX has been deprecated and we have seen
// cases when it isn't supported in VM.
xcr0 := localXCR0 &^ (cpuid.XSAVEFeatureBNDCSR | cpuid.XSAVEFeatureBNDREGS)
xsetbv(0, xcr0)
}
// Set the syscall target.
wrmsr(_MSR_LSTAR, kernelFunc(addrOfSysenter()))
wrmsr(_MSR_SYSCALL_MASK, KernelFlagsClear|_RFLAGS_DF)
// NOTE: This depends on having the 64-bit segments immediately
// following the 32-bit user segments. This is simply the way the
// sysret instruction is designed to work (it assumes they follow).
wrmsr(_MSR_STAR, uintptr(uint64(Kcode)<<32|uint64(Ucode32)<<48))
wrmsr(_MSR_CSTAR, kernelFunc(addrOfSysenter()))
}
// SetCPUIDFaulting sets CPUID faulting per the boolean value.
//
// True is returned if faulting could be set.
//
//go:nosplit
func SetCPUIDFaulting(on bool) bool {
// Per the SDM (Vol 3, Table 2-43), PLATFORM_INFO bit 31 denotes support
// for CPUID faulting, and we enable and disable via the MISC_FEATURES MSR.
if rdmsr(_MSR_PLATFORM_INFO)&_PLATFORM_INFO_CPUID_FAULT != 0 {
features := rdmsr(_MSR_MISC_FEATURES)
if on {
features |= _MISC_FEATURE_CPUID_TRAP
} else {
features &^= _MISC_FEATURE_CPUID_TRAP
}
wrmsr(_MSR_MISC_FEATURES, features)
return true // Setting successful.
}
return false
}
// ReadCR2 reads the current CR2 value.
//
//go:nosplit
func ReadCR2() uintptr {
return readCR2()
}
|