1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
// Copyright 2023 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package precompiledseccomp provides tooling to precompile seccomp-bpf
// programs that can be embedded inside Go source code.
package precompiledseccomp
import (
"encoding/binary"
"fmt"
"sort"
"strings"
"gvisor.dev/gvisor/pkg/bpf"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/seccomp"
)
// ProgramDesc describes a program to be compiled.
type ProgramDesc struct {
// Rules contains the seccomp-bpf rulesets to compile.
Rules []seccomp.RuleSet
// SeccompOptions is the seccomp-bpf program options used in compilation.
SeccompOptions seccomp.ProgramOptions
}
// Program is a precompiled seccomp-bpf program.
// To get actual BPF instructions, call the `RenderInstructions` function.
type Program struct {
// Name is the name of this program within a set of embedded programs.
Name string
// Bytecode32 is the raw BPF bytecode represented as a sequence of uint32s.
Bytecode32 []uint32
// VarOffsets maps variable names to the uint32-based offsets where these
// variables show up in `Bytecode32`.
VarOffsets map[string][]int
}
// Values is an assignment of variables to uint32 values.
// It is used when rendering seccomp-bpf program instructions.
type Values map[string]uint32
const (
uint64VarSuffixHigh = "_high32bits"
uint64VarSuffixLow = "_low32bits"
)
// SetUint64 sets the value of a 64-bit variable in `v`.
// Under the hood, this is stored as two 32-bit variables.
// Use `Values.GetUint64` to retrieve the 64-bit variable.
func (v Values) SetUint64(varName string, value uint64) {
v[varName+uint64VarSuffixHigh] = uint32(value >> 32)
v[varName+uint64VarSuffixLow] = uint32(value)
}
// GetUint64 retrieves the value of a 64-bit variable set using
// `Values.SetUint64(varName)`.
func (v Values) GetUint64(varName string) uint64 {
return uint64(v[varName+"_high32bits"])<<32 | uint64(v[varName+"_low32bits"])
}
// Precompile compiles a `ProgramDesc` with the given values.
// It supports the notion of "variables", which are named in `vars`.
// Variables are uint32s which are only known at runtime, and whose value
// shows up in the BPF bytecode.
//
// `fn` takes in a mapping of variable names to their assigned values,
// and should return a `ProgramDesc` describing the seccomp-bpf program
// to be compiled.
//
// Precompile verifies that all variables in `vars` show up consistently in
// the bytecode by compiling the program twice, ensures that the offsets at
// which some stand-in values is consistent across these two compilation
// attempts, and that nothing else about the BPF bytecode is different.
func Precompile(name string, varNames []string, fn func(Values) ProgramDesc) (Program, error) {
vars := make(map[string]struct{}, len(varNames))
for _, varName := range varNames {
vars[varName] = struct{}{}
}
if len(vars) != len(varNames) {
return Program{}, fmt.Errorf("non-unique variable names: %q", varNames)
}
// These constants are chosen to be recognizable and unique within
// seccomp-bpf programs.
// These could of course show up in seccomp-bpf programs for legitimate
// reasons other than being part the variable being matched against (e.g. a
// jump of this many instructions forward, or a static equality match that
// happens to check against this exact value), but it is very unlikely that
// integers this large actually occur.
// If it does happen, we'll catch it here because one compilation attempt
// will find its placeholder values show up less often than the other.
// Assuming that the reason this occurred is legitimate, update these
// constants to even-less-likely values in order to fix this issue.
const (
varStart1 uint32 = 0x13371337
varStart2 uint32 = 0x42424243
)
// Render the program with one set of values.
// Remember at which offsets we saw these values show up in the bytecode.
values1 := Values(make(map[string]uint32, len(vars)))
v := varStart1
for varName := range vars {
values1[varName] = v
v += 2
}
program1, err := precompile(name, values1, fn)
if err != nil {
return Program{}, err
}
// Do the same, but with a different set of values.
values2 := Values(make(map[string]uint32, len(vars)))
v = varStart2
for _, varName := range varNames {
values2[varName] = v
v += 2
}
program2, err := precompile(name, values2, fn)
if err != nil {
return Program{}, err
}
// Ensure that the offsets we got is consistent.
for _, varName := range varNames {
offsets1 := program1.VarOffsets[varName]
offsets2 := program2.VarOffsets[varName]
if len(offsets1) != len(offsets2) {
return Program{}, fmt.Errorf("var %q has different number of offsets depending on its value: with value 0x%08x it showed up %d times, but with value %d it showed up %d times", varName, values1[varName], len(offsets1), values2[varName], len(offsets2))
}
for i := 0; i < len(offsets1); i++ {
if offsets1[i] != offsets2[i] {
return Program{}, fmt.Errorf("var %q has different offsets depending on its value: with value 0x%08x it showed up at offsets %v, but with value %d it showed up at offsets %v", varName, values1[varName], offsets1, values2[varName], offsets2)
}
}
}
// Ensure that the rest of the bytecode is exactly equal.
if len(program1.Bytecode32) != len(program2.Bytecode32) {
return Program{}, fmt.Errorf("compiled programs do not have the same bytecode size: %d vs %d", len(program1.Bytecode32), len(program2.Bytecode32))
}
knownOffsets := map[int]struct{}{}
for _, varName := range varNames {
for _, offset := range program1.VarOffsets[varName] {
knownOffsets[offset] = struct{}{}
}
}
for i := 0; i < len(program1.Bytecode32); i++ {
if _, isVarOffset := knownOffsets[i]; isVarOffset {
continue
}
if program1.Bytecode32[i] != program2.Bytecode32[i] {
return Program{}, fmt.Errorf("compiled programs do not have the same bytecode at uint32 offset %d (which is not any of the offsets where a variable shows up: %v)", i, knownOffsets)
}
}
return program1, nil
}
// precompile compiles a `ProgramDesc` with the given values.
func precompile(name string, values Values, fn func(Values) ProgramDesc) (Program, error) {
precompileOpts := fn(values)
insns, _, err := seccomp.BuildProgram(precompileOpts.Rules, precompileOpts.SeccompOptions)
if err != nil {
return Program{}, err
}
if log.IsLogging(log.Debug) {
log.Debugf("Compiled program with values %v (%d instructions):", values, len(insns))
for i, insn := range insns {
log.Debugf(" %04d: %s\n", i, insn.String())
}
}
bytecode32 := instructionsToUint32Slice(insns)
varOffsets := getVarOffsets(bytecode32, values)
// nonOptimizedOffsets stores the offsets at which each variable shows up
// in the non-optimized version of the program. It is only computed when
// a variable doesn't show up in the optimized version of the program.
var nonOptimizedOffsets map[string][]int
computeNonOptimizedOffsets := func() error {
if nonOptimizedOffsets != nil {
return nil
}
if !precompileOpts.SeccompOptions.Optimize {
nonOptimizedOffsets = varOffsets
return nil
}
nonOptimizedOpts := precompileOpts.SeccompOptions
nonOptimizedOpts.Optimize = false
nonOptInsns, _, err := seccomp.BuildProgram(precompileOpts.Rules, nonOptimizedOpts)
if err != nil {
return fmt.Errorf("cannot build seccomp program with optimizations disabled: %w", err)
}
nonOptimizedOffsets = getVarOffsets(instructionsToUint32Slice(nonOptInsns), values)
return nil
}
for varName := range values {
if len(varOffsets[varName]) == 0 {
// If the variable doesn't show up in the optimized program but does
// show up in the non-optimized program, then it is not unused.
// It is being optimized away, e.g. as a result of being OR'd with a
// `MatchAll` rule.
// Only report an error if the variable shows up in neither optimized
// nor non-optimized bytecode.
if err := computeNonOptimizedOffsets(); err != nil {
return Program{}, fmt.Errorf("cannot compute variable offsets for the non-optimized version of the program: %v", err)
}
if len(nonOptimizedOffsets[varName]) == 0 {
return Program{}, fmt.Errorf("var %q does not show up in the BPF bytecode", varName)
}
// We set the offset slice for this variable to a nil slice, so that
// it gets properly serialized (as opposed to omitted entirely) in the
// generated Go code.
varOffsets[varName] = nil
}
}
return Program{
Name: name,
Bytecode32: bytecode32,
VarOffsets: varOffsets,
}, nil
}
// getVarOffsets returns the uint32-based offsets at which the values of each
// variable in `values` shows up.
func getVarOffsets(bytecode32 []uint32, values Values) map[string][]int {
varOffsets := make(map[string][]int, len(values))
for varName, value := range values {
for i, v := range bytecode32 {
if v == value {
varOffsets[varName] = append(varOffsets[varName], i)
}
}
}
return varOffsets
}
// Expr renders a Go expression encoding this `Program`.
// It is used when embedding a precompiled `Program` into a Go library file.
// `pkgName` is the package name under which the precompiledseccomp package is
// imported.
func (program Program) Expr(indentPrefix, pkgName string) string {
var sb strings.Builder
sb.WriteString(fmt.Sprintf("%s.Program{\n", pkgName))
sb.WriteString(fmt.Sprintf("%s\tName: %q,\n", indentPrefix, program.Name))
sb.WriteString(fmt.Sprintf("%s\tBytecode32: []uint32{\n", indentPrefix))
for _, v := range program.Bytecode32 {
sb.WriteString(fmt.Sprintf("%s\t\t0x%08x,\n", indentPrefix, v))
}
sb.WriteString(fmt.Sprintf("%s\t},\n", indentPrefix))
sb.WriteString(fmt.Sprintf("%s\tVarOffsets: map[string][]int{\n", indentPrefix))
varNames := make([]string, 0, len(program.VarOffsets))
for varName := range program.VarOffsets {
varNames = append(varNames, varName)
}
sort.Strings(varNames)
for _, varName := range varNames {
if len(program.VarOffsets[varName]) == 0 {
sb.WriteString(fmt.Sprintf("%s\t\t%q: nil,\n", indentPrefix, varName))
continue
}
sb.WriteString(fmt.Sprintf("%s\t\t%q: []int{\n", indentPrefix, varName))
for _, v := range program.VarOffsets[varName] {
sb.WriteString(fmt.Sprintf("%s\t\t\t%d,\n", indentPrefix, v))
}
sb.WriteString(fmt.Sprintf("%s\t\t},\n", indentPrefix))
}
sb.WriteString(fmt.Sprintf("%s\t},\n", indentPrefix))
sb.WriteString(fmt.Sprintf("%s}", indentPrefix))
return sb.String()
}
// RenderInstructions builds the set of precompiled BPF instructions,
// replacing the variables with their values as given in `values`.
// This must be called with the exact same set of variable names as was used
// during `Precompile`.
func (program Program) RenderInstructions(values Values) ([]bpf.Instruction, error) {
if len(values) != len(program.VarOffsets) {
return nil, fmt.Errorf("called with inconsistent vars: got %v expected %v", values, program.VarOffsets)
}
for varName, value := range values {
offsets, found := program.VarOffsets[varName]
if !found {
return nil, fmt.Errorf("var %q was not defined in precompiled instructions (defined: %v)", varName, program.VarOffsets)
}
for _, offset := range offsets {
program.Bytecode32[offset] = value
}
}
return uint32SliceToInstructions(program.Bytecode32)
}
// instructionsToUint32Slice converts a slice of BPF instructions into a slice
// of uint32s containing the same binary data.
func instructionsToUint32Slice(insns []bpf.Instruction) []uint32 {
bytecode := bpf.ToBytecode(insns)
bytecode32 := make([]uint32, len(bytecode)/4)
for i := 0; i < len(bytecode); i += 4 {
bytecode32[i/4] = binary.NativeEndian.Uint32(bytecode[i : i+4])
}
return bytecode32
}
// uint32SliceToInstructions converts a slice of uint32s into a slice of
// BPF instructions containing the same binary data.
func uint32SliceToInstructions(bytecode32 []uint32) ([]bpf.Instruction, error) {
bytecode := make([]byte, len(bytecode32)*4)
for i, v := range bytecode32 {
binary.NativeEndian.PutUint32(bytecode[i*4:], v)
}
return bpf.ParseBytecode(bytecode)
}
// Registration outputs Go code that registers this programs in a
// `map[string]Program` variable named `programsMapVarName` which maps
// programs names to their `Program` struct.
// It is used when embedding precompiled programs into a Go library file.
func (program Program) Registration(indentPrefix, pkgName, programsMapVarName string) string {
return fmt.Sprintf("%s%s[%q] = %s\n", indentPrefix, programsMapVarName, program.Name, program.Expr(indentPrefix, pkgName))
}
|