1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
|
// Copyright 2023 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package seccomp
import (
"fmt"
"strings"
)
// ruleOptimizerFunc is a function type that can optimize a SyscallRule.
// It returns the updated SyscallRule, along with whether any modification
// was made.
type ruleOptimizerFunc func(SyscallRule) (SyscallRule, bool)
// convertSingleCompoundRuleToThatRule replaces `Or` or `And` rules with a
// single branch to just that branch.
func convertSingleCompoundRuleToThatRule[T Or | And](rule SyscallRule) (SyscallRule, bool) {
if tRule, isT := rule.(T); isT && len(tRule) == 1 {
return tRule[0], true
}
return rule, false
}
// flattenCompoundRules turns compound rules (Or or And) embedded inside
// compound rules of the same type into a flat rule of that type.
func flattenCompoundRules[T Or | And](rule SyscallRule) (SyscallRule, bool) {
tRule, isT := rule.(T)
if !isT {
return rule, false
}
anySubT := false
for _, subRule := range tRule {
if _, subIsT := subRule.(T); subIsT {
anySubT = true
break
}
}
if !anySubT {
return rule, false
}
var newRules []SyscallRule
for _, subRule := range tRule {
if subT, subIsT := subRule.(T); subIsT {
newRules = append(newRules, subT...)
} else {
newRules = append(newRules, subRule)
}
}
return SyscallRule(T(newRules)), true
}
// convertMatchAllOrXToMatchAll an Or rule that contains MatchAll to MatchAll.
func convertMatchAllOrXToMatchAll(rule SyscallRule) (SyscallRule, bool) {
orRule, isOr := rule.(Or)
if !isOr {
return rule, false
}
for _, subRule := range orRule {
if _, subIsMatchAll := subRule.(MatchAll); subIsMatchAll {
return MatchAll{}, true
}
}
return orRule, false
}
// convertMatchAllAndXToX removes MatchAll clauses from And rules.
func convertMatchAllAndXToX(rule SyscallRule) (SyscallRule, bool) {
andRule, isAnd := rule.(And)
if !isAnd {
return rule, false
}
hasMatchAll := false
for _, subRule := range andRule {
if _, subIsMatchAll := subRule.(MatchAll); subIsMatchAll {
hasMatchAll = true
break
}
}
if !hasMatchAll {
return rule, false
}
var newRules []SyscallRule
for _, subRule := range andRule {
if _, subIsAny := subRule.(MatchAll); !subIsAny {
newRules = append(newRules, subRule)
}
}
if len(newRules) == 0 {
// An `And` rule with zero rules inside is invalid.
return MatchAll{}, true
}
return And(newRules), true
}
// nilInPerArgToAnyValue replaces `nil` values in `PerArg` rules with
// `AnyValue`. This isn't really an optimization, but it simplifies the
// logic of other `PerArg` optimizers to not have to handle the `nil` case
// separately from the `AnyValue` case.
func nilInPerArgToAnyValue(rule SyscallRule) (SyscallRule, bool) {
perArg, isPerArg := rule.(PerArg)
if !isPerArg {
return rule, false
}
changed := false
for argNum, valueMatcher := range perArg {
if valueMatcher == nil {
perArg[argNum] = AnyValue{}
changed = true
}
}
return perArg, changed
}
// convertUselessPerArgToMatchAll looks for `PerArg` rules that match
// anything and replaces them with `MatchAll`.
func convertUselessPerArgToMatchAll(rule SyscallRule) (SyscallRule, bool) {
perArg, isPerArg := rule.(PerArg)
if !isPerArg {
return rule, false
}
for _, valueMatcher := range perArg {
if _, isAnyValue := valueMatcher.(AnyValue); !isAnyValue {
return rule, false
}
}
return MatchAll{}, true
}
// signature returns a string signature of this `PerArg`.
// This string can be used to identify the behavior of this `PerArg` rule.
func (pa PerArg) signature() string {
var sb strings.Builder
for _, valueMatcher := range pa {
repr := valueMatcher.Repr()
if strings.ContainsRune(repr, ';') {
panic(fmt.Sprintf("ValueMatcher %v (type %T) returned representation %q containing illegal character ';'", valueMatcher, valueMatcher, repr))
}
sb.WriteString(repr)
sb.WriteRune(';')
}
return sb.String()
}
// deduplicatePerArgs deduplicates PerArg rules with identical matchers.
// This can happen during filter construction, when rules are added across
// multiple files.
func deduplicatePerArgs[T Or | And](rule SyscallRule) (SyscallRule, bool) {
tRule, isT := rule.(T)
if !isT || len(tRule) < 2 {
return rule, false
}
knownPerArgs := make(map[string]struct{}, len(tRule))
newRules := make([]SyscallRule, 0, len(tRule))
changed := false
for _, subRule := range tRule {
subPerArg, subIsPerArg := subRule.(PerArg)
if !subIsPerArg {
newRules = append(newRules, subRule)
continue
}
sig := subPerArg.signature()
if _, isDupe := knownPerArgs[sig]; isDupe {
changed = true
continue
}
knownPerArgs[sig] = struct{}{}
newRules = append(newRules, subPerArg)
}
if !changed {
return rule, false
}
return SyscallRule(T(newRules)), true
}
// splitMatchers replaces every `splittableValueMatcher` with a
// `splitMatcher` value matcher instead.
// This enables optimizations that are split-aware to run without
// the need to have logic handling this conversion.
func splitMatchers(rule SyscallRule) (SyscallRule, bool) {
perArg, isPerArg := rule.(PerArg)
if !isPerArg {
return rule, false
}
changed := false
for argNum, valueMatcher := range perArg {
if _, isAlreadySplit := valueMatcher.(splitMatcher); isAlreadySplit {
continue
}
splittableMatcher, isSplittableMatcher := valueMatcher.(splittableValueMatcher)
if !isSplittableMatcher {
continue
}
perArg[argNum] = splittableMatcher.split()
changed = true
}
return perArg, changed
}
// simplifyHalfValueMatcher may convert a `halfValueMatcher` to a simpler
// (and potentially faster) representation.
func simplifyHalfValueMatcher(hvm halfValueMatcher) halfValueMatcher {
switch v := hvm.(type) {
case halfNotSet:
if v == 0 {
return halfAnyValue{}
}
case halfMaskedEqual:
switch {
case v.mask == 0 && v.value == 0:
return halfAnyValue{}
case v.mask == 0xffffffff:
return halfEqualTo(v.value)
case v.value == 0:
return halfNotSet(v.mask)
}
}
return hvm
}
// simplifyHalfValueMatchers replace `halfValueMatcher`s with their simplified
// version.
func simplifyHalfValueMatchers(rule SyscallRule) (SyscallRule, bool) {
perArg, isPerArg := rule.(PerArg)
if !isPerArg {
return rule, false
}
changed := false
for i, valueMatcher := range perArg {
sm, isSplitMatcher := valueMatcher.(splitMatcher)
if !isSplitMatcher {
continue
}
if newHigh := simplifyHalfValueMatcher(sm.highMatcher); newHigh.Repr() != sm.highMatcher.Repr() {
sm.highMatcher = newHigh
perArg[i] = sm
changed = true
}
if newLow := simplifyHalfValueMatcher(sm.lowMatcher); newLow.Repr() != sm.lowMatcher.Repr() {
sm.lowMatcher = newLow
perArg[i] = sm
changed = true
}
}
return perArg, changed
}
// anySplitMatchersToAnyValue converts `splitMatcher`s where both halves
// match any value to a single AnyValue{} rule.
func anySplitMatchersToAnyValue(rule SyscallRule) (SyscallRule, bool) {
perArg, isPerArg := rule.(PerArg)
if !isPerArg {
return rule, false
}
changed := false
for argNum, valueMatcher := range perArg {
sm, isSplitMatcher := valueMatcher.(splitMatcher)
if !isSplitMatcher {
continue
}
_, highIsAny := sm.highMatcher.(halfAnyValue)
_, lowIsAny := sm.lowMatcher.(halfAnyValue)
if highIsAny && lowIsAny {
perArg[argNum] = AnyValue{}
changed = true
}
}
return perArg, changed
}
// invalidValueMatcher is a stand-in `ValueMatcher` with a unique
// representation that doesn't look like any legitimate `ValueMatcher`.
// Calling any method other than `Repr` will panic.
// It is used as an intermediate step for some optimizers.
type invalidValueMatcher struct {
ValueMatcher
}
// Repr implements `ValueMatcher.Repr`.
func (invalidValueMatcher) Repr() string {
return "invalidValueMatcher"
}
// invalidHalfValueMatcher is a stand-in `HalfValueMatcher` with a unique
// representation that doesn't look like any legitimate `HalfValueMatcher`.
// Calling any method other than `Repr` will panic.
// It is used as an intermediate step for some optimizers.
type invalidHalfValueMatcher struct {
halfValueMatcher
}
// Repr implements `HalfValueMatcher.Repr`.
func (invalidHalfValueMatcher) Repr() string {
return "invalidHalfValueMatcher"
}
// sameStringSet returns whether the given string sets are equal.
func sameStringSet(m1, m2 map[string]struct{}) bool {
if len(m1) != len(m2) {
return false
}
for k := range m1 {
if _, found := m2[k]; !found {
return false
}
}
return true
}
// extractRepeatedMatchers looks for common argument matchers that are
// repeated across all combinations of *other* argument matchers in branches
// of an `Or` rule that contains only `PerArg` rules.
// It removes them from these `PerArg` rules, creates an `Or` of the
// matchers that are repeated across all combinations, and `And`s that
// rule to the rewritten `Or` rule.
// In other words (simplifying `PerArg` to 4 items for simplicity):
//
// Or{
// PerArg{A1, B1, C1, D},
// PerArg{A2, B1, C1, D},
// PerArg{A1, B2, C2, D},
// PerArg{A2, B2, C2, D},
// PerArg{A1, B3, C3, D},
// PerArg{A2, B3, C3, D},
// }
//
// becomes (after one pass):
//
// And{
// Or{
// # Note: These will get deduplicated by deduplicatePerArgs
// PerArg{A1, AnyValue{}, AnyValue{}, AnyValue{}},
// PerArg{A2, AnyValue{}, AnyValue{}, AnyValue{}},
// PerArg{A1, AnyValue{}, AnyValue{}, AnyValue{}},
// PerArg{A2, AnyValue{}, AnyValue{}, AnyValue{}},
// PerArg{A1, AnyValue{}, AnyValue{}, AnyValue{}},
// PerArg{A2, AnyValue{}, AnyValue{}, AnyValue{}},
// },
// Or{
// # Note: These will also get deduplicated by deduplicatePerArgs
// PerArg{AnyValue{}, B1, C1, D},
// PerArg{AnyValue{}, B1, C1, D},
// PerArg{AnyValue{}, B2, C2, D},
// PerArg{AnyValue{}, B2, C2, D},
// PerArg{AnyValue{}, B3, C3, D},
// PerArg{AnyValue{}, B3, C3, D},
// },
// }
//
// ... then, on the second pass (after deduplication),
// the second inner `Or` rule gets recursively optimized to:
//
// And{
// Or{
// PerArg{A1, AnyValue{}, AnyValue{}, AnyValue{}},
// PerArg{A2, AnyValue{}, AnyValue{}, AnyValue{}},
// },
// And{
// Or{
// PerArg{AnyValue{}, AnyValue{}, AnyValue{}, D},
// PerArg{AnyValue{}, AnyValue{}, AnyValue{}, D},
// PerArg{AnyValue{}, AnyValue{}, AnyValue{}, D},
// },
// Or{
// PerArg{AnyValue{}, B1, C1, AnyValue{}},
// PerArg{AnyValue{}, B2, C2, AnyValue{}},
// PerArg{AnyValue{}, B3, C3, AnyValue{}},
// },
// },
// }
//
// ... which (after other optimizers clean this all up), finally becomes:
//
// And{
// Or{
// PerArg{A1, AnyValue{}, AnyValue{}, AnyValue{}},
// PerArg{A2, AnyValue{}, AnyValue{}, AnyValue{}},
// },
// PerArg{AnyValue{}, AnyValue{}, AnyValue{}, D},
// Or{
// PerArg{AnyValue{}, B1, C1, AnyValue{}},
// PerArg{AnyValue{}, B2, C2, AnyValue{}},
// PerArg{AnyValue{}, B3, C3, AnyValue{}},
// },
// }
//
// ... Turning 24 comparisons into just 9.
func extractRepeatedMatchers(rule SyscallRule) (SyscallRule, bool) {
orRule, isOr := rule.(Or)
if !isOr || len(orRule) < 2 {
return rule, false
}
for _, subRule := range orRule {
if _, subIsPerArg := subRule.(PerArg); !subIsPerArg {
return rule, false
}
}
// extractData is the result of extracting a matcher at `argNum`.
type extractData struct {
// extractedMatcher is the extracted matcher that should be AND'd
// with the rest.
extractedMatcher ValueMatcher
// otherMatchers represents the rest of the matchers after
// `extractedMatcher` is extracted from a `PerArg`.
// The matcher that was extracted should be replaced with something
// that matches any value (i.e. either `AnyValue` or `halfAnyValue`).
otherMatchers PerArg
// otherMatchersSig represents the signature of other matchers, with
// the extracted matcher being replaced with an "invalid" matcher.
// The "invalid" matcher acts as a token that is equal across all
// instances of `otherMatchersSig` for the other `PerArg` rules of the
// `Or` expression.
// `otherMatchersSig` isn't the same as `otherMatchers.Signature()`,
// as `otherMatchers` does not contain this "invalid" matcher (it
// contains a matcher that matches any value instead).
otherMatchersSig string
// extractedMatcherIsAnyValue is true iff `extractedMatcher` would
// match any value thrown at it.
// If this is the case across all branches of the `Or` expression,
// the optimization is skipped.
extractedMatcherIsAnyValue bool
// otherMatchersAreAllAnyValue is true iff all matchers in
// `otherMatchers` would match any value thrown at them.
// If this is the case across all branches of the `Or` expression,
// the optimization is skipped.
otherMatchersAreAllAnyValue bool
}
allOtherMatchersSigs := make(map[string]struct{}, len(orRule))
argExprToOtherMatchersSigs := make(map[string]map[string]struct{}, len(orRule))
for argNum := 0; argNum < len(orRule[0].(PerArg)); argNum++ {
// Check if `argNum` takes on a set of matchers common for all
// combinations of all other matchers.
// We try to extract a common matcher by three ways, which we
// iterate over here.
// Each of them returns the result of their extraction attempt,
// along with a boolean representing whether extraction was
// possible at all.
// To "extract" a matcher means to replace it with an "invalid"
// matcher in the PerArg expression, and checking if their set of
// signatures is identical for each unique `Repr()` of the extracted
// matcher. For splittable matcher, we try each half as well.
// Conceptually (simplify PerArg to 3 arguments for simplicity),
// if we have:
//
// Or{
// PerArg{A, B, C},
// PerArg{D, E, F},
// }
//
// ... then first, we will try:
//
// Or{
// PerArg{invalid, B, C}
// PerArg{invalid, E, F}
// }
//
// ... then, assuming both A and D are `splitMatcher`s:
// we will try:
//
// Or{
// PerArg{splitMatcher{invalid, A.lowMatcher}, B, C}
// PerArg{splitMatcher{invalid, D.lowMatcher}, E, F}
// }
//
// ... and finally we will try:
//
// Or{
// PerArg{splitMatcher{A.highMatcher, invalid}, B, C}
// PerArg{splitMatcher{D.highMatcher, invalid}, E, F}
// }
for _, extractFn := range []func(PerArg) (extractData, bool){
// Return whole ValueMatcher at a time:
func(pa PerArg) (extractData, bool) {
extractedMatcher := pa[argNum]
_, extractedMatcherIsAnyValue := extractedMatcher.(AnyValue)
otherMatchers := pa.clone()
otherMatchers[argNum] = invalidValueMatcher{}
otherMatchersSig := otherMatchers.signature()
otherMatchers[argNum] = AnyValue{}
otherMatchersAreAllAnyValue := true
for _, valueMatcher := range otherMatchers {
if _, isAnyValue := valueMatcher.(AnyValue); !isAnyValue {
otherMatchersAreAllAnyValue = false
break
}
}
return extractData{
extractedMatcher: extractedMatcher,
otherMatchers: otherMatchers,
otherMatchersSig: otherMatchersSig,
extractedMatcherIsAnyValue: extractedMatcherIsAnyValue,
otherMatchersAreAllAnyValue: otherMatchersAreAllAnyValue,
}, true
},
// Extract a matcher for the high bits only:
func(pa PerArg) (extractData, bool) {
split, isSplit := pa[argNum].(splitMatcher)
if !isSplit {
return extractData{}, false
}
_, extractedMatcherIsAnyValue := split.highMatcher.(halfAnyValue)
_, lowMatcherIsAnyValue := split.lowMatcher.(halfAnyValue)
extractedMatcher := high32BitsMatch(split.highMatcher)
otherMatchers := pa.clone()
otherMatchers[argNum] = splitMatcher{
highMatcher: invalidHalfValueMatcher{},
lowMatcher: split.lowMatcher,
}
otherMatchersSig := otherMatchers.signature()
otherMatchers[argNum] = low32BitsMatch(split.lowMatcher)
otherMatchersAreAllAnyValue := lowMatcherIsAnyValue
for i, valueMatcher := range otherMatchers {
if i == argNum {
continue
}
if _, isAnyValue := valueMatcher.(AnyValue); !isAnyValue {
otherMatchersAreAllAnyValue = false
break
}
}
return extractData{
extractedMatcher: extractedMatcher,
otherMatchers: otherMatchers,
otherMatchersSig: otherMatchersSig,
extractedMatcherIsAnyValue: extractedMatcherIsAnyValue,
otherMatchersAreAllAnyValue: otherMatchersAreAllAnyValue,
}, true
},
// Extract a matcher for the low bits only:
func(pa PerArg) (extractData, bool) {
split, isSplit := pa[argNum].(splitMatcher)
if !isSplit {
return extractData{}, false
}
_, extractedMatcherIsAnyValue := split.lowMatcher.(halfAnyValue)
_, highMatcherIsAnyValue := split.highMatcher.(halfAnyValue)
extractedMatcher := low32BitsMatch(split.lowMatcher)
otherMatchers := pa.clone()
otherMatchers[argNum] = splitMatcher{
highMatcher: split.highMatcher,
lowMatcher: invalidHalfValueMatcher{},
}
otherMatchersSig := otherMatchers.signature()
otherMatchers[argNum] = high32BitsMatch(split.highMatcher)
otherMatchersAreAllAnyValue := highMatcherIsAnyValue
for i, valueMatcher := range otherMatchers {
if i == argNum {
continue
}
if _, isAnyValue := valueMatcher.(AnyValue); !isAnyValue {
otherMatchersAreAllAnyValue = false
break
}
}
return extractData{
extractedMatcher: extractedMatcher,
otherMatchers: otherMatchers,
otherMatchersSig: otherMatchersSig,
extractedMatcherIsAnyValue: extractedMatcherIsAnyValue,
otherMatchersAreAllAnyValue: otherMatchersAreAllAnyValue,
}, true
},
} {
clear(allOtherMatchersSigs)
clear(argExprToOtherMatchersSigs)
allExtractable := true
allArgNumMatchersAreAnyValue := true
allOtherMatchersAreAnyValue := true
for _, subRule := range orRule {
ed, extractable := extractFn(subRule.(PerArg))
if allExtractable = allExtractable && extractable; !allExtractable {
break
}
allArgNumMatchersAreAnyValue = allArgNumMatchersAreAnyValue && ed.extractedMatcherIsAnyValue
allOtherMatchersAreAnyValue = allOtherMatchersAreAnyValue && ed.otherMatchersAreAllAnyValue
repr := ed.extractedMatcher.Repr()
allOtherMatchersSigs[ed.otherMatchersSig] = struct{}{}
if _, reprSeen := argExprToOtherMatchersSigs[repr]; !reprSeen {
argExprToOtherMatchersSigs[repr] = make(map[string]struct{}, len(orRule))
}
argExprToOtherMatchersSigs[repr][ed.otherMatchersSig] = struct{}{}
}
if !allExtractable || allArgNumMatchersAreAnyValue || allOtherMatchersAreAnyValue {
// Cannot optimize.
continue
}
// Now check if each possible repr of `argNum` got the same set of
// signatures for other matchers as `allOtherMatchersSigs`.
sameOtherMatchers := true
for _, omsigs := range argExprToOtherMatchersSigs {
if !sameStringSet(omsigs, allOtherMatchersSigs) {
sameOtherMatchers = false
break
}
}
if !sameOtherMatchers {
continue
}
// We can simplify the rule by extracting `argNum` out.
// Create two copies of `orRule`: One with only `argNum`,
// and the other one with all arguments except `argNum`.
// This will likely contain many duplicates but that's OK,
// they'll be optimized out by `deduplicatePerArgs`.
argNumMatch := Or(make([]SyscallRule, len(orRule)))
otherArgsMatch := Or(make([]SyscallRule, len(orRule)))
for i, subRule := range orRule {
ed, _ := extractFn(subRule.(PerArg))
onlyArg := PerArg{AnyValue{}, AnyValue{}, AnyValue{}, AnyValue{}, AnyValue{}, AnyValue{}, AnyValue{}}
onlyArg[argNum] = ed.extractedMatcher
argNumMatch[i] = onlyArg
otherArgsMatch[i] = ed.otherMatchers
}
// Attempt to optimize the "other" arguments:
otherArgsMatchOpt, _ := extractRepeatedMatchers(otherArgsMatch)
return And{argNumMatch, otherArgsMatchOpt}, true
}
}
return rule, false
}
// optimizationRun is a stateful struct tracking the state of an optimization
// over a rule. It may not be used concurrently.
type optimizationRun struct {
// funcs is the list of optimizer functions to run on the rules.
// Optimizers should be ranked in order of importance, with the most
// important first.
// An optimizer will be exhausted before the next one is ever run.
// Earlier optimizers are re-exhausted if later optimizers cause change.
funcs []ruleOptimizerFunc
// recurseFuncs is a list of closures that correspond one-to-one to `funcs`
// and are suitable for passing to `SyscallRule.Recurse`. They are stored
// here in order to be allocated once, as opposed to escaping if they were
// specified directly as argument to `SyscallRule.Recurse`.
recurseFuncs []func(subRule SyscallRule) SyscallRule
// changed tracks whether any change has been made in the current pass.
// It is updated as the optimizer runs.
changed bool
}
// apply recursively applies `opt.funcs[funcIndex]` to the given `rule`.
// It sets `opt.changed` to true if there has been any change.
func (opt *optimizationRun) apply(rule SyscallRule, funcIndex int) SyscallRule {
rule.Recurse(opt.recurseFuncs[funcIndex])
if opt.changed {
return rule
}
rule, opt.changed = opt.funcs[funcIndex](rule)
return rule
}
// optimize losslessly optimizes a SyscallRule using the `optimizationRun`'s
// optimizer functions.
// It may not be called concurrently.
func (opt *optimizationRun) optimize(rule SyscallRule) SyscallRule {
opt.recurseFuncs = make([]func(SyscallRule) SyscallRule, len(opt.funcs))
for i := range opt.funcs {
funcIndex := i
opt.recurseFuncs[funcIndex] = func(subRule SyscallRule) SyscallRule {
return opt.apply(subRule, funcIndex)
}
}
for opt.changed = true; opt.changed; {
for i := range opt.funcs {
opt.changed = false
rule = opt.apply(rule, i)
if opt.changed {
break
}
}
}
return rule
}
// optimizeSyscallRule losslessly optimizes a `SyscallRule`.
func optimizeSyscallRule(rule SyscallRule) SyscallRule {
return (&optimizationRun{
funcs: []ruleOptimizerFunc{
// Convert Or / And rules with a single rule into that single rule.
convertSingleCompoundRuleToThatRule[Or],
convertSingleCompoundRuleToThatRule[And],
// Flatten Or/And rules.
flattenCompoundRules[Or],
flattenCompoundRules[And],
// Handle MatchAll. This is best done after flattening so that we
// effectively traverse the whole tree to find a MatchAll by just
// linearly scanning through the first (and only) level of rules.
convertMatchAllOrXToMatchAll,
convertMatchAllAndXToX,
// Replace all `nil` values in `PerArg` to `AnyValue`, to simplify
// the `PerArg` matchers below.
nilInPerArgToAnyValue,
// Deduplicate redundant `PerArg`s in Or and And.
// This must come after `nilInPerArgToAnyValue` because it does not
// handle the nil case.
deduplicatePerArgs[Or],
deduplicatePerArgs[And],
// Remove useless `PerArg` matchers.
// This must come after `nilInPerArgToAnyValue` because it does not
// handle the nil case.
convertUselessPerArgToMatchAll,
// Replace `ValueMatcher`s that are splittable into their split version.
// Like `nilInPerArgToAnyValue`, this isn't so much an optimization,
// but allows the matchers below (which are `splitMatcher`-aware) to not
// have to carry logic to split the matchers they encounter.
splitMatchers,
// Replace `halfValueMatcher`s with their simplified version.
simplifyHalfValueMatchers,
// Replace `splitMatchers` that match any value with `AnyValue`.
anySplitMatchersToAnyValue,
// Extract repeated argument matchers out of `Or` expressions.
// This must come after `nilInPerArgToAnyValue` because it does not
// handle the nil case.
// This should ideally run late in the list because it does a bunch
// of memory allocations (even in the non-optimizable case), which
// should be avoided unless there is nothing else left to optimize.
extractRepeatedMatchers,
},
}).optimize(rule)
}
|