1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package seccomp
import (
"fmt"
"sort"
"strings"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/bpf"
)
// The offsets are based on the following struct in include/linux/seccomp.h.
//
// struct seccomp_data {
// int nr;
// __u32 arch;
// __u64 instruction_pointer;
// __u64 args[6];
// };
const (
seccompDataOffsetNR = 0
seccompDataOffsetArch = 4
seccompDataOffsetIPLow = 8
seccompDataOffsetIPHigh = 12
seccompDataOffsetArgs = 16
)
func seccompDataOffsetArgLow(i int) uint32 {
return uint32(seccompDataOffsetArgs + i*8)
}
func seccompDataOffsetArgHigh(i int) uint32 {
return seccompDataOffsetArgLow(i) + 4
}
// ValueMatcher verifies a numerical value, typically a syscall argument
// or RIP value.
type ValueMatcher interface {
// String returns a human-readable representation of the match rule.
// If the returned string contains "VAL", it will be replaced with
// the symbolic name of the value being matched against.
String() string
// Repr returns a string that will be used for asserting equality between
// two `ValueMatcher` instances. It must therefore be unique to the
// `ValueMatcher` implementation and to its parameters.
// It must not contain the character ";".
Repr() string
// Render should add rules to the given program that verify the value
// loadable from `value` matches this rule or not.
// The rules should indicate this by either jumping to `labelSet.Matched()`
// or `labelSet.Mismatched()`. They may not fall through.
Render(program *syscallProgram, labelSet *labelSet, value matchedValue)
// InterestingValues returns a list of values that may be interesting to
// test this `ValueMatcher` against.
InterestingValues() []uint64
}
// halfValueMatcher verifies a 32-bit value.
type halfValueMatcher interface {
// String returns a human-friendly representation of the check being done
// against the 32-bit value.
// The string "x.(high|low) {{halfValueMatcher.String()}}" should read well,
// e.g. "x.low == 0xffff".
String() string
// Repr returns a string that will be used for asserting equality between
// two `halfValueMatcher` instances. It must therefore be unique to the
// `halfValueMatcher` implementation and to its parameters.
// It must not contain the character ";".
Repr() string
// HalfRender should add rules to the given program that verify the value
// loaded into the "A" register matches this 32-bit value or not.
// The rules should indicate this by either jumping to `labelSet.Matched()`
// or `labelSet.Mismatched()`. They may not fall through.
HalfRender(program *syscallProgram, labelSet *labelSet)
// InterestingValues returns a list of values that may be interesting to
// test this `halfValueMatcher` against.
InterestingValues() []uint32
}
// halfAnyValue implements `halfValueMatcher` and matches any value.
type halfAnyValue struct{}
// String implements `halfValueMatcher.String`.
func (halfAnyValue) String() string {
return "== *"
}
// Repr implements `halfValueMatcher.Repr`.
func (halfAnyValue) Repr() string {
return "halfAnyValue"
}
// HalfRender implements `halfValueMatcher.HalfRender`.
func (halfAnyValue) HalfRender(program *syscallProgram, labelSet *labelSet) {
program.JumpTo(labelSet.Matched())
}
// halfEqualTo implements `halfValueMatcher` and matches a specific 32-bit value.
type halfEqualTo uint32
// String implements `halfValueMatcher.String`.
func (heq halfEqualTo) String() string {
if heq == 0 {
return "== 0"
}
return fmt.Sprintf("== %#x", uint32(heq))
}
// Repr implements `halfValueMatcher.Repr`.
func (heq halfEqualTo) Repr() string {
return fmt.Sprintf("halfEq(%#x)", uint32(heq))
}
// HalfRender implements `halfValueMatcher.HalfRender`.
func (heq halfEqualTo) HalfRender(program *syscallProgram, labelSet *labelSet) {
program.If(bpf.Jmp|bpf.Jeq|bpf.K, uint32(heq), labelSet.Matched())
program.JumpTo(labelSet.Mismatched())
}
// halfNotSet implements `halfValueMatcher` and matches using the "set"
// bitwise operation.
type halfNotSet uint32
// String implements `halfValueMatcher.String`.
func (hns halfNotSet) String() string {
return fmt.Sprintf("& %#x == 0", uint32(hns))
}
// Repr implements `halfValueMatcher.Repr`.
func (hns halfNotSet) Repr() string {
return fmt.Sprintf("halfNotSet(%#x)", uint32(hns))
}
// HalfRender implements `halfValueMatcher.HalfRender`.
func (hns halfNotSet) HalfRender(program *syscallProgram, labelSet *labelSet) {
program.If(bpf.Jmp|bpf.Jset|bpf.K, uint32(hns), labelSet.Mismatched())
program.JumpTo(labelSet.Matched())
}
// halfMaskedEqual implements `halfValueMatcher` and verifies that the value
// is equal after applying a bit mask.
type halfMaskedEqual struct {
mask uint32
value uint32
}
// String implements `halfValueMatcher.String`.
func (hmeq halfMaskedEqual) String() string {
if hmeq.value == 0 {
return fmt.Sprintf("& %#x == 0", hmeq.mask)
}
return fmt.Sprintf("& %#x == %#x", hmeq.mask, hmeq.value)
}
// Repr implements `halfValueMatcher.Repr`.
func (hmeq halfMaskedEqual) Repr() string {
return fmt.Sprintf("halfMaskedEqual(%#x, %#x)", hmeq.mask, hmeq.value)
}
// HalfRender implements `halfValueMatcher.HalfRender`.
func (hmeq halfMaskedEqual) HalfRender(program *syscallProgram, labelSet *labelSet) {
program.Stmt(bpf.Alu|bpf.And|bpf.K, hmeq.mask)
program.IfNot(bpf.Jmp|bpf.Jeq|bpf.K, hmeq.value, labelSet.Mismatched())
program.JumpTo(labelSet.Matched())
}
// splitMatcher implements `ValueMatcher` and verifies each half of the 64-bit
// value independently (with AND semantics).
// It implements `ValueMatcher`, but is never used directly in seccomp filter
// rules. Rather, it acts as an intermediate representation for the rules that
// can be expressed as an AND of two 32-bit values.
type splitMatcher struct {
// repr is the `Repr()` of the original `ValueMatcher` (pre-split).
repr string
// highMatcher is the half-value matcher to verify the high 32 bits.
highMatcher halfValueMatcher
// lowMatcher is the half-value matcher to verify the low 32 bits.
lowMatcher halfValueMatcher
}
// String implements `ValueMatcher.String`.
func (sm splitMatcher) String() string {
if sm.repr == "" {
_, highIsAnyValue := sm.highMatcher.(halfAnyValue)
_, lowIsAnyValue := sm.lowMatcher.(halfAnyValue)
if highIsAnyValue && lowIsAnyValue {
return "== *"
}
if highIsAnyValue {
return fmt.Sprintf("VAL.low %s", sm.lowMatcher.String())
}
if lowIsAnyValue {
return fmt.Sprintf("VAL.high %s", sm.highMatcher.String())
}
return fmt.Sprintf("(VAL.high %s && VAL.low %s)", sm.highMatcher.String(), sm.lowMatcher.String())
}
return sm.repr
}
// Repr implements `ValueMatcher.Repr`.
func (sm splitMatcher) Repr() string {
if sm.repr == "" {
_, highIsAnyValue := sm.highMatcher.(halfAnyValue)
_, lowIsAnyValue := sm.lowMatcher.(halfAnyValue)
if highIsAnyValue && lowIsAnyValue {
return "split(*)"
}
if highIsAnyValue {
return fmt.Sprintf("low=%s", sm.lowMatcher.Repr())
}
if lowIsAnyValue {
return fmt.Sprintf("high=%s", sm.highMatcher.Repr())
}
return fmt.Sprintf("(high=%s && low=%s)", sm.highMatcher.Repr(), sm.lowMatcher.Repr())
}
return sm.repr
}
// Render implements `ValueMatcher.Render`.
func (sm splitMatcher) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
_, highIsAny := sm.highMatcher.(halfAnyValue)
_, lowIsAny := sm.lowMatcher.(halfAnyValue)
if highIsAny && lowIsAny {
program.JumpTo(labelSet.Matched())
return
}
if highIsAny {
value.LoadLow32Bits()
sm.lowMatcher.HalfRender(program, labelSet)
return
}
if lowIsAny {
value.LoadHigh32Bits()
sm.highMatcher.HalfRender(program, labelSet)
return
}
// We render the "low" bits first on the assumption that most syscall
// arguments fit within 32-bits, and those rules actually only care
// about the value of the low 32 bits. This way, we only check the
// high 32 bits if the low 32 bits have already matched.
lowLabels := labelSet.Push("low", labelSet.NewLabel(), labelSet.Mismatched())
lowFrag := program.Record()
value.LoadLow32Bits()
sm.lowMatcher.HalfRender(program, lowLabels)
lowFrag.MustHaveJumpedTo(lowLabels.Matched(), labelSet.Mismatched())
program.Label(lowLabels.Matched())
highFrag := program.Record()
value.LoadHigh32Bits()
sm.highMatcher.HalfRender(program, labelSet.Push("high", labelSet.Matched(), labelSet.Mismatched()))
highFrag.MustHaveJumpedTo(labelSet.Matched(), labelSet.Mismatched())
}
// high32BitsMatch returns a `splitMatcher` that only matches the high 32 bits
// of a 64-bit value.
func high32BitsMatch(hvm halfValueMatcher) splitMatcher {
return splitMatcher{
highMatcher: hvm,
lowMatcher: halfAnyValue{},
}
}
// low32BitsMatch returns a `splitMatcher` that only matches the low 32 bits
// of a 64-bit value.
func low32BitsMatch(hvm halfValueMatcher) splitMatcher {
return splitMatcher{
highMatcher: halfAnyValue{},
lowMatcher: hvm,
}
}
// splittableValueMatcher should be implemented by `ValueMatcher` that can
// be expressed as a `splitMatcher`.
type splittableValueMatcher interface {
// split converts this `ValueMatcher` into a `splitMatcher`.
split() splitMatcher
}
// renderSplittable is a helper function for the `ValueMatcher.Render`
// implementation of `splittableValueMatcher`s.
func renderSplittable(sm splittableValueMatcher, program *syscallProgram, labelSet *labelSet, value matchedValue) {
sm.split().Render(program, labelSet, value)
}
// high32Bits returns the higher 32-bits of the given value.
func high32Bits(val uintptr) uint32 {
return uint32(val >> 32)
}
// low32Bits returns the lower 32-bits of the given value.
func low32Bits(val uintptr) uint32 {
return uint32(val)
}
// AnyValue is marker to indicate any value will be accepted.
// It implements ValueMatcher.
type AnyValue struct{}
// String implements `ValueMatcher.String`.
func (AnyValue) String() string {
return "== *"
}
// Repr implements `ValueMatcher.Repr`.
func (av AnyValue) Repr() string {
return av.String()
}
// Render implements `ValueMatcher.Render`.
func (av AnyValue) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
program.JumpTo(labelSet.Matched())
}
// EqualTo specifies a value that needs to be strictly matched.
// It implements ValueMatcher.
type EqualTo uintptr
// String implements `ValueMatcher.String`.
func (eq EqualTo) String() string {
if eq == 0 {
return "== 0"
}
return fmt.Sprintf("== %#x", uintptr(eq))
}
// Repr implements `ValueMatcher.Repr`.
func (eq EqualTo) Repr() string {
return eq.String()
}
// Render implements `ValueMatcher.Render`.
func (eq EqualTo) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
renderSplittable(eq, program, labelSet, value)
}
// split implements `splittableValueMatcher.split`.
func (eq EqualTo) split() splitMatcher {
return splitMatcher{
repr: eq.Repr(),
highMatcher: halfEqualTo(high32Bits(uintptr(eq))),
lowMatcher: halfEqualTo(low32Bits(uintptr(eq))),
}
}
// NotEqual specifies a value that is strictly not equal.
type NotEqual uintptr
// String implements `ValueMatcher.String`.
func (ne NotEqual) String() string {
return fmt.Sprintf("!= %#x", uintptr(ne))
}
// Repr implements `ValueMatcher.Repr`.
func (ne NotEqual) Repr() string {
return ne.String()
}
// Render implements `ValueMatcher.Render`.
func (ne NotEqual) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
// Note that `NotEqual` is *not* a splittable rule by itself, because it is not the
// conjunction of two `halfValueMatchers` (it is the *disjunction* of them).
// However, it is also the exact inverse of `EqualTo`.
// Therefore, we can use `EqualTo` here, and simply invert the
// matched/mismatched labels.
EqualTo(ne).Render(program, labelSet.Push("inverted", labelSet.Mismatched(), labelSet.Matched()), value)
}
// GreaterThan specifies a value that needs to be strictly smaller.
type GreaterThan uintptr
// String implements `ValueMatcher.String`.
func (gt GreaterThan) String() string {
return fmt.Sprintf("> %#x", uintptr(gt))
}
// Repr implements `ValueMatcher.Repr`.
func (gt GreaterThan) Repr() string {
return gt.String()
}
// Render implements `ValueMatcher.Render`.
func (gt GreaterThan) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
high := high32Bits(uintptr(gt))
// Assert the higher 32bits are greater than or equal.
// arg_high >= high ? continue : violation (arg_high < high)
value.LoadHigh32Bits()
program.IfNot(bpf.Jmp|bpf.Jge|bpf.K, high, labelSet.Mismatched())
// arg_high == high ? continue : success (arg_high > high)
program.IfNot(bpf.Jmp|bpf.Jeq|bpf.K, high, labelSet.Matched())
// Assert that the lower 32bits are greater.
// arg_low > low ? continue/success : violation (arg_high == high and arg_low <= low)
value.LoadLow32Bits()
program.IfNot(bpf.Jmp|bpf.Jgt|bpf.K, low32Bits(uintptr(gt)), labelSet.Mismatched())
program.JumpTo(labelSet.Matched())
}
// GreaterThanOrEqual specifies a value that needs to be smaller or equal.
type GreaterThanOrEqual uintptr
// String implements `ValueMatcher.String`.
func (ge GreaterThanOrEqual) String() string {
return fmt.Sprintf(">= %#x", uintptr(ge))
}
// Repr implements `ValueMatcher.Repr`.
func (ge GreaterThanOrEqual) Repr() string {
return ge.String()
}
// Render implements `ValueMatcher.Render`.
func (ge GreaterThanOrEqual) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
high := high32Bits(uintptr(ge))
// Assert the higher 32bits are greater than or equal.
// arg_high >= high ? continue : violation (arg_high < high)
value.LoadHigh32Bits()
program.IfNot(bpf.Jmp|bpf.Jge|bpf.K, high, labelSet.Mismatched())
// arg_high == high ? continue : success (arg_high > high)
program.IfNot(bpf.Jmp|bpf.Jeq|bpf.K, high, labelSet.Matched())
// Assert that the lower 32bits are greater or equal (assuming the
// higher bits are equal).
// arg_low >= low ? continue/success : violation (arg_high == high and arg_low < low)
value.LoadLow32Bits()
program.IfNot(bpf.Jmp|bpf.Jge|bpf.K, low32Bits(uintptr(ge)), labelSet.Mismatched())
program.JumpTo(labelSet.Matched())
}
// LessThan specifies a value that needs to be strictly greater.
type LessThan uintptr
// String implements `ValueMatcher.String`.
func (lt LessThan) String() string {
return fmt.Sprintf("< %#x", uintptr(lt))
}
// Repr implements `ValueMatcher.Repr`.
func (lt LessThan) Repr() string {
return lt.String()
}
// Render implements `ValueMatcher.Render`.
func (lt LessThan) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
high := high32Bits(uintptr(lt))
// Assert the higher 32bits are less than or equal.
// arg_high > high ? violation : continue
value.LoadHigh32Bits()
program.If(bpf.Jmp|bpf.Jgt|bpf.K, high, labelSet.Mismatched())
// arg_high == high ? continue : success (arg_high < high)
program.IfNot(bpf.Jmp|bpf.Jeq|bpf.K, high, labelSet.Matched())
// Assert that the lower 32bits are less (assuming the
// higher bits are equal).
// arg_low >= low ? violation : continue
value.LoadLow32Bits()
program.If(bpf.Jmp|bpf.Jge|bpf.K, low32Bits(uintptr(lt)), labelSet.Mismatched())
program.JumpTo(labelSet.Matched())
}
// LessThanOrEqual specifies a value that needs to be greater or equal.
type LessThanOrEqual uintptr
// String implements `ValueMatcher.String`.
func (le LessThanOrEqual) String() string {
return fmt.Sprintf("<= %#x", uintptr(le))
}
// Repr implements `ValueMatcher.Repr`.
func (le LessThanOrEqual) Repr() string {
return le.String()
}
// Render implements `ValueMatcher.Render`.
func (le LessThanOrEqual) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
high := high32Bits(uintptr(le))
// Assert the higher 32bits are less than or equal.
// assert arg_high > high ? violation : continue
value.LoadHigh32Bits()
program.If(bpf.Jmp|bpf.Jgt|bpf.K, high, labelSet.Mismatched())
// arg_high == high ? continue : success
program.IfNot(bpf.Jmp|bpf.Jeq|bpf.K, high, labelSet.Matched())
// Assert the lower bits are less than or equal (assuming
// the higher bits are equal).
// arg_low > low ? violation : success
value.LoadLow32Bits()
program.If(bpf.Jmp|bpf.Jgt|bpf.K, low32Bits(uintptr(le)), labelSet.Mismatched())
program.JumpTo(labelSet.Matched())
}
// NonNegativeFD ensures that an FD argument is a non-negative int32.
type NonNegativeFD struct{}
// String implements `ValueMatcher.String`.
func (NonNegativeFD) String() string {
return "is non-negative FD"
}
// Repr implements `ValueMatcher.Repr`.
func (NonNegativeFD) Repr() string {
return "NonNegativeFD"
}
// Render implements `ValueMatcher.Render`.
func (nnfd NonNegativeFD) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
renderSplittable(nnfd, program, labelSet, value)
}
// split implements `splittableValueMatcher.split`.
func (nnfd NonNegativeFD) split() splitMatcher {
return splitMatcher{
repr: nnfd.Repr(),
// FDs are 32 bits, so the high 32 bits must all be zero.
// Negative int32 has the MSB (31st bit) set.
// So the low 32bits of the FD value must not have the 31st bit set.
highMatcher: halfEqualTo(0),
lowMatcher: halfNotSet(1 << 31),
}
}
// MaskedEqual specifies a value that matches the input after the input is
// masked (bitwise &) against the given mask. It implements `ValueMatcher`.
type maskedEqual struct {
mask uintptr
value uintptr
}
// String implements `ValueMatcher.String`.
func (me maskedEqual) String() string {
return fmt.Sprintf("& %#x == %#x", me.mask, me.value)
}
// Repr implements `ValueMatcher.Repr`.
func (me maskedEqual) Repr() string {
return me.String()
}
// Render implements `ValueMatcher.Render`.
func (me maskedEqual) Render(program *syscallProgram, labelSet *labelSet, value matchedValue) {
renderSplittable(me, program, labelSet, value)
}
// split implements `splittableValueMatcher.Split`.
func (me maskedEqual) split() splitMatcher {
return splitMatcher{
repr: me.Repr(),
highMatcher: halfMaskedEqual{high32Bits(me.mask), high32Bits(me.value)},
lowMatcher: halfMaskedEqual{low32Bits(me.mask), low32Bits(me.value)},
}
}
// MaskedEqual specifies a value that matches the input after the input is
// masked (bitwise &) against the given mask. Can be used to verify that input
// only includes certain approved flags.
func MaskedEqual(mask, value uintptr) ValueMatcher {
return maskedEqual{
mask: mask,
value: value,
}
}
// BitsAllowlist specifies that a value can only have non-zero bits within
// the mask specified in `allowlist`. It implements `ValueMatcher`.
func BitsAllowlist(allowlist uintptr) ValueMatcher {
return MaskedEqual(^allowlist, 0)
}
// SyscallRule expresses a set of rules to verify the arguments of a specific
// syscall.
type SyscallRule interface {
// Render renders the syscall rule in the given `program`.
// The emitted instructions **must** end up jumping to either
// `labelSet.Matched()` or `labelSet.Mismatched()`; they may
// not "fall through" to whatever instructions will be added
// next into the program.
Render(program *syscallProgram, labelSet *labelSet)
// Copy returns a copy of this `SyscallRule`.
Copy() SyscallRule
// Recurse should call the given function on all `SyscallRule`s that are
// part of this `SyscallRule`, and should replace them with the returned
// `SyscallRule`. For example, conjunctive rules should call the given
// function on each of the `SyscallRule`s that they are ANDing, replacing
// them with the rule returned by the function.
Recurse(func(SyscallRule) SyscallRule)
// String returns a human-readable string representing what the rule does.
String() string
}
// MatchAll implements `SyscallRule` and matches everything.
type MatchAll struct{}
// Render implements `SyscallRule.Render`.
func (MatchAll) Render(program *syscallProgram, labelSet *labelSet) {
program.JumpTo(labelSet.Matched())
}
// Copy implements `SyscallRule.Copy`.
func (MatchAll) Copy() SyscallRule {
return MatchAll{}
}
// Recurse implements `SyscallRule.Recurse`.
func (MatchAll) Recurse(func(SyscallRule) SyscallRule) {}
// String implements `SyscallRule.String`.
func (MatchAll) String() string { return "true" }
// Or expresses an "OR" (a disjunction) over a set of `SyscallRule`s.
// An `Or` may not be empty.
type Or []SyscallRule
// Render implements `SyscallRule.Render`.
func (or Or) Render(program *syscallProgram, labelSet *labelSet) {
if len(or) == 0 {
panic("Or expression cannot be empty")
}
// If `len(or) == 1`, this will be optimized away to be the same as
// rendering the single rule in the disjunction.
for i, rule := range or {
frag := program.Record()
nextRuleLabel := labelSet.NewLabel()
rule.Render(program, labelSet.Push(fmt.Sprintf("or[%d]", i), labelSet.Matched(), nextRuleLabel))
frag.MustHaveJumpedTo(labelSet.Matched(), nextRuleLabel)
program.Label(nextRuleLabel)
}
program.JumpTo(labelSet.Mismatched())
}
// Copy implements `SyscallRule.Copy`.
func (or Or) Copy() SyscallRule {
orCopy := make([]SyscallRule, len(or))
for i, rule := range or {
orCopy[i] = rule.Copy()
}
return Or(orCopy)
}
// Recurse implements `SyscallRule.Recurse`.
func (or Or) Recurse(fn func(SyscallRule) SyscallRule) {
for i, rule := range or {
or[i] = fn(rule)
}
}
// String implements `SyscallRule.String`.
func (or Or) String() string {
switch len(or) {
case 0:
return "invalid"
case 1:
return or[0].String()
default:
var sb strings.Builder
sb.WriteRune('(')
for i, rule := range or {
if i != 0 {
sb.WriteString(" || ")
}
sb.WriteString(rule.String())
}
sb.WriteRune(')')
return sb.String()
}
}
// And expresses an "AND" (a conjunction) over a set of `SyscallRule`s.
// An `And` may not be empty.
type And []SyscallRule
// Render implements `SyscallRule.Render`.
func (and And) Render(program *syscallProgram, labelSet *labelSet) {
if len(and) == 0 {
panic("And expression cannot be empty")
}
// If `len(and) == 1`, this will be optimized away to be the same as
// rendering the single rule in the conjunction.
for i, rule := range and {
frag := program.Record()
nextRuleLabel := labelSet.NewLabel()
rule.Render(program, labelSet.Push(fmt.Sprintf("and[%d]", i), nextRuleLabel, labelSet.Mismatched()))
frag.MustHaveJumpedTo(nextRuleLabel, labelSet.Mismatched())
program.Label(nextRuleLabel)
}
program.JumpTo(labelSet.Matched())
}
// Copy implements `SyscallRule.Copy`.
func (and And) Copy() SyscallRule {
andCopy := make([]SyscallRule, len(and))
for i, rule := range and {
andCopy[i] = rule.Copy()
}
return And(andCopy)
}
// Recurse implements `SyscallRule.Recurse`.
func (and And) Recurse(fn func(SyscallRule) SyscallRule) {
for i, rule := range and {
and[i] = fn(rule)
}
}
// String implements `SyscallRule.String`.
func (and And) String() string {
switch len(and) {
case 0:
return "invalid"
case 1:
return and[0].String()
default:
var sb strings.Builder
sb.WriteRune('(')
for i, rule := range and {
if i != 0 {
sb.WriteString(" && ")
}
sb.WriteString(rule.String())
}
sb.WriteRune(')')
return sb.String()
}
}
// PerArg implements SyscallRule and verifies the syscall arguments and RIP.
//
// For example:
//
// rule := PerArg{
// EqualTo(linux.ARCH_GET_FS | linux.ARCH_SET_FS), // arg0
// }
type PerArg [7]ValueMatcher // 6 arguments + RIP
// RuleIP indicates what rules in the Rule array have to be applied to
// instruction pointer.
const RuleIP = 6
// clone returns a copy of this `PerArg`.
// It is more efficient than `Copy` because it returns a `PerArg`
// directly, rather than a `SyscallRule` interface.
func (pa PerArg) clone() PerArg {
return PerArg{
pa[0],
pa[1],
pa[2],
pa[3],
pa[4],
pa[5],
pa[6],
}
}
// Copy implements `SyscallRule.Copy`.
func (pa PerArg) Copy() SyscallRule {
return pa.clone()
}
// Render implements `SyscallRule.Render`.
func (pa PerArg) Render(program *syscallProgram, labelSet *labelSet) {
for i, arg := range pa {
if arg == nil {
continue
}
frag := program.Record()
nextArgLabel := labelSet.NewLabel()
labelSuffix := fmt.Sprintf("arg[%d]", i)
// Determine the data offset for low and high bits of input.
dataOffsetLow := seccompDataOffsetArgLow(i)
dataOffsetHigh := seccompDataOffsetArgHigh(i)
if i == RuleIP {
dataOffsetLow = seccompDataOffsetIPLow
dataOffsetHigh = seccompDataOffsetIPHigh
labelSuffix = "rip"
}
ls := labelSet.Push(labelSuffix, nextArgLabel, labelSet.Mismatched())
arg.Render(program, ls, matchedValue{
program: program,
dataOffsetHigh: dataOffsetHigh,
dataOffsetLow: dataOffsetLow,
})
frag.MustHaveJumpedTo(ls.Matched(), ls.Mismatched())
program.Label(nextArgLabel)
}
// Matched all argument-wise rules, jump to the final rule matched label.
program.JumpTo(labelSet.Matched())
}
// Recurse implements `SyscallRule.Recurse`.
func (PerArg) Recurse(fn func(SyscallRule) SyscallRule) {}
// String implements `SyscallRule.String`.
func (pa PerArg) String() string {
var sb strings.Builder
writtenArgs := 0
for i, arg := range pa {
if arg == nil {
continue
}
if _, isAny := arg.(AnyValue); isAny {
continue
}
if writtenArgs != 0 {
sb.WriteString(" && ")
}
str := arg.String()
var varName string
if i == RuleIP {
varName = "rip"
} else {
varName = fmt.Sprintf("arg[%d]", i)
}
if strings.Contains(str, "VAL") {
sb.WriteString(strings.ReplaceAll(str, "VAL", varName))
} else {
sb.WriteString(varName)
sb.WriteRune(' ')
sb.WriteString(str)
}
writtenArgs++
}
if writtenArgs == 0 {
return "true"
}
if writtenArgs == 1 {
return sb.String()
}
return "(" + sb.String() + ")"
}
// SyscallRules maps syscall numbers to their corresponding rules.
//
// For example:
//
// rules := MakeSyscallRules(map[uintptr]SyscallRule{
// syscall.SYS_FUTEX: Or{
// PerArg{
// AnyValue{},
// EqualTo(linux.FUTEX_WAIT | linux.FUTEX_PRIVATE_FLAG),
// },
// PerArg{
// AnyValue{},
// EqualTo(linux.FUTEX_WAKE | linux.FUTEX_PRIVATE_FLAG),
// },
// },
// syscall.SYS_GETPID: MatchAll{},
// })
type SyscallRules struct {
rules map[uintptr]SyscallRule
}
// NewSyscallRules returns a new SyscallRules.
func NewSyscallRules() SyscallRules {
return MakeSyscallRules(nil)
}
// MakeSyscallRules returns a new SyscallRules with the given set of rules.
func MakeSyscallRules(rules map[uintptr]SyscallRule) SyscallRules {
if rules == nil {
rules = make(map[uintptr]SyscallRule)
}
return SyscallRules{rules: rules}
}
// String returns a string representation of the syscall rules, one syscall
// per line.
func (sr SyscallRules) String() string {
if len(sr.rules) == 0 {
return "(no rules)"
}
sysnums := make([]uintptr, 0, len(sr.rules))
for sysno := range sr.rules {
sysnums = append(sysnums, sysno)
}
sort.Slice(sysnums, func(i, j int) bool {
return sysnums[i] < sysnums[j]
})
var sb strings.Builder
for _, sysno := range sysnums {
sb.WriteString(fmt.Sprintf("syscall %d: %v\n", sysno, sr.rules[sysno]))
}
return strings.TrimSpace(sb.String())
}
// Size returns the number of syscall numbers for which a rule is defined.
func (sr SyscallRules) Size() int {
return len(sr.rules)
}
// Get returns the rule defined for the given syscall number.
func (sr SyscallRules) Get(sysno uintptr) SyscallRule {
return sr.rules[sysno]
}
// Has returns whether there is a rule defined for the given syscall number.
func (sr SyscallRules) Has(sysno uintptr) bool {
_, has := sr.rules[sysno]
return has
}
// Add adds the given rule. It will create a new entry for a new syscall, otherwise
// it will append to the existing rules.
// Returns itself for chainability.
func (sr SyscallRules) Add(sysno uintptr, r SyscallRule) SyscallRules {
if cur, ok := sr.rules[sysno]; ok {
sr.rules[sysno] = Or{cur, r}
} else {
sr.rules[sysno] = r
}
return sr
}
// Set sets the rule for the given syscall number.
// Panics if there is already a rule for this syscall number.
// This is useful for deterministic rules where the set of syscall rules is
// added in multiple chunks but is known to never overlap by syscall number.
// Returns itself for chainability.
func (sr SyscallRules) Set(sysno uintptr, r SyscallRule) SyscallRules {
if cur, ok := sr.rules[sysno]; ok {
panic(fmt.Sprintf("tried to set syscall rule for sysno=%d to %v but it is already set to %v", sysno, r, cur))
}
sr.rules[sysno] = r
return sr
}
// Remove clears the syscall rule for the given syscall number.
// It will panic if there is no syscall rule for this syscall number.
func (sr SyscallRules) Remove(sysno uintptr) {
if !sr.Has(sysno) {
panic(fmt.Sprintf("tried to remove syscall rule for sysno=%d but it is not set", sysno))
}
delete(sr.rules, sysno)
}
// Merge merges the given SyscallRules.
// Returns itself for chainability.
func (sr SyscallRules) Merge(other SyscallRules) SyscallRules {
for sysno, r := range other.rules {
sr.Add(sysno, r)
}
return sr
}
// Copy returns a deep copy of these SyscallRules.
func (sr SyscallRules) Copy() SyscallRules {
rulesCopy := make(map[uintptr]SyscallRule, len(sr.rules))
for sysno, r := range sr.rules {
rulesCopy[sysno] = r.Copy()
}
return MakeSyscallRules(rulesCopy)
}
// ForSingleArgument runs the given function on the `ValueMatcher` rules
// for a single specific syscall argument of the given syscall number.
// If the function returns an error, it will be propagated along with some
// details as to which rule caused the error to be returned.
// ForSingleArgument also returns an error if there are no rules defined for
// the given syscall number, or if at least one rule for this syscall number
// is not either a `PerArg` rule or a rule with children rules (as this would
// indicate that the `PerArg` rules alone may not be a good representation of
// the entire set of rules for this system call).
func (sr SyscallRules) ForSingleArgument(sysno uintptr, argNum int, fn func(ValueMatcher) error) error {
if argNum < 0 || argNum >= len(PerArg{}) {
return fmt.Errorf("invalid argument number %d", argNum)
}
if !sr.Has(sysno) {
return fmt.Errorf("syscall %d has no rules defined", sysno)
}
var err error
var process func(SyscallRule) SyscallRule
var callCount int
process = func(r SyscallRule) SyscallRule {
callCount++
pa, isPerArg := r.(PerArg)
if isPerArg {
if gotErr := fn(pa[argNum]); gotErr != nil && err == nil {
err = fmt.Errorf("PerArg rule %v: arg[%d] = %v (type %T): %v", pa, argNum, pa[argNum], pa[argNum], gotErr)
}
} else {
beforeRecurse := callCount
r.Recurse(process)
if callCount == beforeRecurse {
err = fmt.Errorf("rule %v (type: %T) is not a PerArg or a recursive rule", r, r)
}
}
return r
}
process(sr.rules[sysno])
return err
}
// DenyNewExecMappings is a set of rules that denies creating new executable
// mappings and converting existing ones.
var DenyNewExecMappings = MakeSyscallRules(map[uintptr]SyscallRule{
unix.SYS_MMAP: PerArg{
AnyValue{},
AnyValue{},
MaskedEqual(unix.PROT_EXEC, unix.PROT_EXEC),
},
unix.SYS_MPROTECT: PerArg{
AnyValue{},
AnyValue{},
MaskedEqual(unix.PROT_EXEC, unix.PROT_EXEC),
},
})
|