1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package arch provides abstractions around architecture-dependent details,
// such as syscall calling conventions, native types, etc.
package arch
import (
"fmt"
"io"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/marshal"
"gvisor.dev/gvisor/pkg/sentry/arch/fpu"
"gvisor.dev/gvisor/pkg/sentry/limits"
)
// Arch describes an architecture.
type Arch int
const (
// AMD64 is the x86-64 architecture.
AMD64 Arch = iota
// ARM64 is the aarch64 architecture.
ARM64
)
// String implements fmt.Stringer.
func (a Arch) String() string {
switch a {
case AMD64:
return "amd64"
case ARM64:
return "arm64"
default:
return fmt.Sprintf("Arch(%d)", a)
}
}
// contextInterface provides architecture-dependent information for a thread.
// This is currently not referenced, because there exists only one concrete
// implementation of this interface (*Context64), which we reference directly
// wherever this interface could otherwise be used in order to avoid the
// overhead involved in calling functions on interfaces in Go.
// This interface is still useful in order to see the entire
// architecture-dependent call surface it must support, as this is difficult
// to follow across the rest of this module due to the conditional compilation
// of the files that make it up.
//
// NOTE(b/34169503): Currently we use uintptr here to refer to a generic native
// register value. While this will work for the foreseeable future, it isn't
// strictly correct. We may want to create some abstraction that makes this
// more clear or enables us to store values of arbitrary widths. This is
// particularly true for RegisterMap().
type contextInterface interface {
// Arch returns the architecture for this Context.
Arch() Arch
// Native converts a generic type to a native value.
//
// Because the architecture is not specified here, we may be dealing
// with return values of varying sizes (for example ARCH_GETFS). This
// is a simple utility function to convert to the native size in these
// cases, and then we can CopyOut.
Native(val uintptr) marshal.Marshallable
// Value converts a native type back to a generic value.
// Once a value has been converted to native via the above call -- it
// can be converted back here.
Value(val marshal.Marshallable) uintptr
// Width returns the number of bytes for a native value.
Width() uint
// Fork creates a clone of the context.
Fork() *Context64
// SyscallNo returns the syscall number.
SyscallNo() uintptr
// SyscallSaveOrig save original register value.
SyscallSaveOrig()
// SyscallArgs returns the syscall arguments in an array.
SyscallArgs() SyscallArguments
// Return returns the return value for a system call.
Return() uintptr
// SetReturn sets the return value for a system call.
SetReturn(value uintptr)
// RestartSyscall reverses over the current syscall instruction, such that
// when the application resumes execution the syscall will be re-attempted.
RestartSyscall()
// RestartSyscallWithRestartBlock reverses over the current syscall
// instraction and overwrites the current syscall number with that of
// restart_syscall(2). This causes the application to restart the current
// syscall with a custom function when execution resumes.
RestartSyscallWithRestartBlock()
// IP returns the current instruction pointer.
IP() uintptr
// SetIP sets the current instruction pointer.
SetIP(value uintptr)
// Stack returns the current stack pointer.
Stack() uintptr
// SetStack sets the current stack pointer.
SetStack(value uintptr)
// TLS returns the current TLS pointer.
TLS() uintptr
// SetTLS sets the current TLS pointer. Returns false if value is invalid.
SetTLS(value uintptr) bool
// SetOldRSeqInterruptedIP sets the register that contains the old IP
// when an "old rseq" restartable sequence is interrupted.
SetOldRSeqInterruptedIP(value uintptr)
// StateData returns a pointer to underlying architecture state.
StateData() *State
// RegisterMap returns a map of all registers.
RegisterMap() (map[string]uintptr, error)
// SignalSetup modifies the context in preparation for handling the
// given signal.
//
// st is the stack where the signal handler frame should be
// constructed.
//
// act is the SigAction that specifies how this signal is being
// handled.
//
// info is the SignalInfo of the signal being delivered.
//
// alt is the alternate signal stack (even if the alternate signal
// stack is not going to be used).
//
// sigset is the signal mask before entering the signal handler.
//
// featureSet is the application CPU feature set.
SignalSetup(st *Stack, act *linux.SigAction, info *linux.SignalInfo, alt *linux.SignalStack, sigset linux.SignalSet, featureSet cpuid.FeatureSet) error
// SignalRestore restores context after returning from a signal
// handler.
//
// st is the current thread stack.
//
// rt is true if SignalRestore is being entered from rt_sigreturn and
// false if SignalRestore is being entered from sigreturn.
//
// featureSet is the application CPU feature set.
//
// SignalRestore returns the thread's new signal mask.
SignalRestore(st *Stack, rt bool, featureSet cpuid.FeatureSet) (linux.SignalSet, linux.SignalStack, error)
// SingleStep returns true if single stepping is enabled.
SingleStep() bool
// SetSingleStep enables single stepping.
SetSingleStep()
// ClearSingleStep disables single stepping.
ClearSingleStep()
// FloatingPointData will be passed to underlying save routines.
FloatingPointData() *fpu.State
// NewMmapLayout returns a layout for a new MM, where MinAddr for the
// returned layout must be no lower than min, and MaxAddr for the returned
// layout must be no higher than max. Repeated calls to NewMmapLayout may
// return different layouts.
NewMmapLayout(min, max hostarch.Addr, limits *limits.LimitSet) (MmapLayout, error)
// PIELoadAddress returns a preferred load address for a
// position-independent executable within l.
PIELoadAddress(l MmapLayout) hostarch.Addr
// Hack around our package dependences being too broken to support the
// equivalent of arch_ptrace():
// PtracePeekUser implements ptrace(PTRACE_PEEKUSR).
PtracePeekUser(addr uintptr) (marshal.Marshallable, error)
// PtracePokeUser implements ptrace(PTRACE_POKEUSR).
PtracePokeUser(addr, data uintptr) error
// PtraceGetRegs implements ptrace(PTRACE_GETREGS) by writing the
// general-purpose registers represented by this Context to dst and
// returning the number of bytes written.
PtraceGetRegs(dst io.Writer) (int, error)
// PtraceSetRegs implements ptrace(PTRACE_SETREGS) by reading
// general-purpose registers from src into this Context and returning the
// number of bytes read.
PtraceSetRegs(src io.Reader) (int, error)
// PtraceGetRegSet implements ptrace(PTRACE_GETREGSET) by writing the
// register set given by architecture-defined value regset from this
// Context to dst and returning the number of bytes written, which must be
// less than or equal to maxlen.
PtraceGetRegSet(regset uintptr, dst io.Writer, maxlen int, fs cpuid.FeatureSet) (int, error)
// PtraceSetRegSet implements ptrace(PTRACE_SETREGSET) by reading the
// register set given by architecture-defined value regset from src and
// returning the number of bytes read, which must be less than or equal to
// maxlen.
PtraceSetRegSet(regset uintptr, src io.Reader, maxlen int, fs cpuid.FeatureSet) (int, error)
// FullRestore returns 'true' if all CPU registers must be restored
// when switching to the untrusted application. Typically a task enters
// and leaves the kernel via a system call. Platform.Switch() may
// optimize for this by not saving/restoring all registers if allowed
// by the ABI. For e.g. the amd64 ABI specifies that syscall clobbers
// %rcx and %r11. If FullRestore returns true then these optimizations
// must be disabled and all registers restored.
FullRestore() bool
}
// Compile-time assertion that Context64 implements contextInterface.
var _ = (contextInterface)((*Context64)(nil))
// MmapDirection is a search direction for mmaps.
type MmapDirection int
const (
// MmapBottomUp instructs mmap to prefer lower addresses.
MmapBottomUp MmapDirection = iota
// MmapTopDown instructs mmap to prefer higher addresses.
MmapTopDown
)
// MmapLayout defines the layout of the user address space for a particular
// MemoryManager.
//
// Note that "highest address" below is always exclusive.
//
// +stateify savable
type MmapLayout struct {
// MinAddr is the lowest mappable address.
MinAddr hostarch.Addr
// MaxAddr is the highest mappable address.
MaxAddr hostarch.Addr
// BottomUpBase is the lowest address that may be returned for a
// MmapBottomUp mmap.
BottomUpBase hostarch.Addr
// TopDownBase is the highest address that may be returned for a
// MmapTopDown mmap.
TopDownBase hostarch.Addr
// DefaultDirection is the direction for most non-fixed mmaps in this
// layout.
DefaultDirection MmapDirection
// MaxStackRand is the maximum randomization to apply to stack
// allocations to maintain a proper gap between the stack and
// TopDownBase.
MaxStackRand uint64
}
// Valid returns true if this layout is valid.
func (m *MmapLayout) Valid() bool {
if m.MinAddr > m.MaxAddr {
return false
}
if m.BottomUpBase < m.MinAddr {
return false
}
if m.BottomUpBase > m.MaxAddr {
return false
}
if m.TopDownBase < m.MinAddr {
return false
}
if m.TopDownBase > m.MaxAddr {
return false
}
return true
}
// SyscallArgument is an argument supplied to a syscall implementation. The
// methods used to access the arguments are named after the ***C type name*** and
// they convert to the closest Go type available. For example, Int() refers to a
// 32-bit signed integer argument represented in Go as an int32.
//
// Using the accessor methods guarantees that the conversion between types is
// correct, taking into account size and signedness (i.e., zero-extension vs
// signed-extension).
type SyscallArgument struct {
// Prefer to use accessor methods instead of 'Value' directly.
Value uintptr
}
// SyscallArguments represents the set of arguments passed to a syscall.
type SyscallArguments [6]SyscallArgument
// Pointer returns the hostarch.Addr representation of a pointer argument.
func (a SyscallArgument) Pointer() hostarch.Addr {
return hostarch.Addr(a.Value)
}
// Int returns the int32 representation of a 32-bit signed integer argument.
func (a SyscallArgument) Int() int32 {
return int32(a.Value)
}
// Uint returns the uint32 representation of a 32-bit unsigned integer argument.
func (a SyscallArgument) Uint() uint32 {
return uint32(a.Value)
}
// Int64 returns the int64 representation of a 64-bit signed integer argument.
func (a SyscallArgument) Int64() int64 {
return int64(a.Value)
}
// Uint64 returns the uint64 representation of a 64-bit unsigned integer argument.
func (a SyscallArgument) Uint64() uint64 {
return uint64(a.Value)
}
// SizeT returns the uint representation of a size_t argument.
func (a SyscallArgument) SizeT() uint {
return uint(a.Value)
}
// ModeT returns the int representation of a mode_t argument.
func (a SyscallArgument) ModeT() uint {
return uint(uint16(a.Value))
}
|