1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build amd64
// +build amd64
package arch
import (
"bytes"
"fmt"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/marshal"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/rand"
"gvisor.dev/gvisor/pkg/sentry/arch/fpu"
"gvisor.dev/gvisor/pkg/sentry/limits"
)
// Host specifies the host architecture.
const Host = AMD64
// These constants come directly from Linux.
const (
// maxAddr64 is the maximum userspace address. It is TASK_SIZE in Linux
// for a 64-bit process.
maxAddr64 hostarch.Addr = (1 << 47) - hostarch.PageSize
// maxStackRand64 is the maximum randomization to apply to the stack.
// It is defined by arch/x86/mm/mmap.c:stack_maxrandom_size in Linux.
maxStackRand64 = 16 << 30 // 16 GB
// maxMmapRand64 is the maximum randomization to apply to the mmap
// layout. It is defined by arch/x86/mm/mmap.c:arch_mmap_rnd in Linux.
maxMmapRand64 = (1 << 28) * hostarch.PageSize
// minGap64 is the minimum gap to leave at the top of the address space
// for the stack. It is defined by arch/x86/mm/mmap.c:MIN_GAP in Linux.
minGap64 = (128 << 20) + maxStackRand64
// preferredPIELoadAddr is the standard Linux position-independent
// executable base load address. It is ELF_ET_DYN_BASE in Linux.
//
// The Platform {Min,Max}UserAddress() may preclude loading at this
// address. See other preferredFoo comments below.
preferredPIELoadAddr hostarch.Addr = maxAddr64 / 3 * 2
)
// These constants are selected as heuristics to help make the Platform's
// potentially limited address space conform as closely to Linux as possible.
const (
// Select a preferred minimum TopDownBase address.
//
// Some applications (TSAN and other *SANs) are very particular about
// the way the Linux mmap allocator layouts out the address space.
//
// TSAN in particular expects top down allocations to be made in the
// range [0x7e8000000000, 0x800000000000).
//
// The minimum TopDownBase on Linux would be:
// 0x800000000000 - minGap64 - maxMmapRand64 = 0x7efbf8000000.
//
// (minGap64 because TSAN uses a small RLIMIT_STACK.)
//
// 0x7e8000000000 is selected arbitrarily by TSAN to leave room for
// allocations below TopDownBase.
//
// N.B. ASAN and MSAN are more forgiving; ASAN allows allocations all
// the way down to 0x10007fff8000, and MSAN down to 0x700000000000.
//
// Of course, there is no hard minimum to allocation; an allocator can
// search all the way from TopDownBase to Min. However, TSAN declared
// their range "good enough".
//
// We would like to pick a TopDownBase such that it is unlikely that an
// allocator will select an address below TSAN's minimum. We achieve
// this by trying to leave a sizable gap below TopDownBase.
//
// This is all "preferred" because the layout min/max address may not
// allow us to select such a TopDownBase, in which case we have to fall
// back to a layout that TSAN may not be happy with.
preferredTopDownAllocMin hostarch.Addr = 0x7e8000000000
preferredAllocationGap = 128 << 30 // 128 GB
preferredTopDownBaseMin = preferredTopDownAllocMin + preferredAllocationGap
// minMmapRand64 is the smallest we are willing to make the
// randomization to stay above preferredTopDownBaseMin.
minMmapRand64 = (1 << 26) * hostarch.PageSize
)
// Context64 represents an AMD64 context.
//
// +stateify savable
type Context64 struct {
State
}
// Arch implements Context.Arch.
func (c *Context64) Arch() Arch {
return AMD64
}
// FloatingPointData returns the state of the floating-point unit.
func (c *Context64) FloatingPointData() *fpu.State {
return &c.State.fpState
}
// Fork returns an exact copy of this context.
func (c *Context64) Fork() *Context64 {
return &Context64{
State: c.State.Fork(),
}
}
// Return returns the current syscall return value.
func (c *Context64) Return() uintptr {
return uintptr(c.Regs.Rax)
}
// SetReturn sets the syscall return value.
func (c *Context64) SetReturn(value uintptr) {
c.Regs.Rax = uint64(value)
}
// IP returns the current instruction pointer.
func (c *Context64) IP() uintptr {
return uintptr(c.Regs.Rip)
}
// SetIP sets the current instruction pointer.
func (c *Context64) SetIP(value uintptr) {
c.Regs.Rip = uint64(value)
}
// Stack returns the current stack pointer.
func (c *Context64) Stack() uintptr {
return uintptr(c.Regs.Rsp)
}
// SetStack sets the current stack pointer.
func (c *Context64) SetStack(value uintptr) {
c.Regs.Rsp = uint64(value)
}
// TLS returns the current TLS pointer.
func (c *Context64) TLS() uintptr {
return uintptr(c.Regs.Fs_base)
}
// SetTLS sets the current TLS pointer. Returns false if value is invalid.
func (c *Context64) SetTLS(value uintptr) bool {
if !isValidSegmentBase(uint64(value)) {
return false
}
c.Regs.Fs = 0
c.Regs.Fs_base = uint64(value)
return true
}
// SetOldRSeqInterruptedIP implements Context.SetOldRSeqInterruptedIP.
func (c *Context64) SetOldRSeqInterruptedIP(value uintptr) {
c.Regs.R10 = uint64(value)
}
// Native returns the native type for the given val.
func (c *Context64) Native(val uintptr) marshal.Marshallable {
v := primitive.Uint64(val)
return &v
}
// Value returns the generic val for the given native type.
func (c *Context64) Value(val marshal.Marshallable) uintptr {
return uintptr(*val.(*primitive.Uint64))
}
// Width returns the byte width of this architecture.
func (c *Context64) Width() uint {
return 8
}
// mmapRand returns a random adjustment for randomizing an mmap layout.
func mmapRand(max uint64) hostarch.Addr {
return hostarch.Addr(rand.Int63n(int64(max))).RoundDown()
}
// NewMmapLayout implements Context.NewMmapLayout consistently with Linux.
func (c *Context64) NewMmapLayout(min, max hostarch.Addr, r *limits.LimitSet) (MmapLayout, error) {
min, ok := min.RoundUp()
if !ok {
return MmapLayout{}, unix.EINVAL
}
if max > maxAddr64 {
max = maxAddr64
}
max = max.RoundDown()
if min > max {
return MmapLayout{}, unix.EINVAL
}
stackSize := r.Get(limits.Stack)
// MAX_GAP in Linux.
maxGap := (max / 6) * 5
gap := hostarch.Addr(stackSize.Cur)
if gap < minGap64 {
gap = minGap64
}
if gap > maxGap {
gap = maxGap
}
defaultDir := MmapTopDown
if stackSize.Cur == limits.Infinity {
defaultDir = MmapBottomUp
}
topDownMin := max - gap - maxMmapRand64
maxRand := hostarch.Addr(maxMmapRand64)
if topDownMin < preferredTopDownBaseMin {
// Try to keep TopDownBase above preferredTopDownBaseMin by
// shrinking maxRand.
maxAdjust := maxRand - minMmapRand64
needAdjust := preferredTopDownBaseMin - topDownMin
if needAdjust <= maxAdjust {
maxRand -= needAdjust
}
}
rnd := mmapRand(uint64(maxRand))
l := MmapLayout{
MinAddr: min,
MaxAddr: max,
// TASK_UNMAPPED_BASE in Linux.
BottomUpBase: (max/3 + rnd).RoundDown(),
TopDownBase: (max - gap - rnd).RoundDown(),
DefaultDirection: defaultDir,
// We may have reduced the maximum randomization to keep
// TopDownBase above preferredTopDownBaseMin while maintaining
// our stack gap. Stack allocations must use that max
// randomization to avoiding eating into the gap.
MaxStackRand: uint64(maxRand),
}
// Final sanity check on the layout.
if !l.Valid() {
panic(fmt.Sprintf("Invalid MmapLayout: %+v", l))
}
return l, nil
}
// PIELoadAddress implements Context.PIELoadAddress.
func (c *Context64) PIELoadAddress(l MmapLayout) hostarch.Addr {
base := preferredPIELoadAddr
max, ok := base.AddLength(maxMmapRand64)
if !ok {
panic(fmt.Sprintf("preferredPIELoadAddr %#x too large", base))
}
if max > l.MaxAddr {
// preferredPIELoadAddr won't fit; fall back to the standard
// Linux behavior of 2/3 of TopDownBase. TSAN won't like this.
//
// Don't bother trying to shrink the randomization for now.
base = l.TopDownBase / 3 * 2
}
return base + mmapRand(maxMmapRand64)
}
// userStructSize is the size in bytes of Linux's struct user on amd64.
const userStructSize = 928
// PtracePeekUser implements Context.PtracePeekUser.
func (c *Context64) PtracePeekUser(addr uintptr) (marshal.Marshallable, error) {
if addr&7 != 0 || addr >= userStructSize {
return nil, unix.EIO
}
// PTRACE_PEEKUSER and PTRACE_POKEUSER are only effective on regs and
// u_debugreg, returning 0 or silently no-oping for other fields
// respectively.
if addr < uintptr(ptraceRegistersSize) {
regs := c.ptraceGetRegs()
buf := make([]byte, regs.SizeBytes())
regs.MarshalUnsafe(buf)
return c.Native(uintptr(hostarch.ByteOrder.Uint64(buf[addr:]))), nil
}
// Note: x86 debug registers are missing.
return c.Native(0), nil
}
// PtracePokeUser implements Context.PtracePokeUser.
func (c *Context64) PtracePokeUser(addr, data uintptr) error {
if addr&7 != 0 || addr >= userStructSize {
return unix.EIO
}
if addr < uintptr(ptraceRegistersSize) {
regs := c.ptraceGetRegs()
buf := make([]byte, regs.SizeBytes())
regs.MarshalUnsafe(buf)
hostarch.ByteOrder.PutUint64(buf[addr:], uint64(data))
_, err := c.PtraceSetRegs(bytes.NewBuffer(buf))
return err
}
// Note: x86 debug registers are missing.
return nil
}
|