1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build amd64
// +build amd64
package arch
import (
"math"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/marshal/primitive"
"gvisor.dev/gvisor/pkg/sentry/arch/fpu"
"gvisor.dev/gvisor/pkg/usermem"
)
// SignalContext64 is equivalent to struct sigcontext, the type passed as the
// second argument to signal handlers set by signal(2).
//
// +marshal
type SignalContext64 struct {
R8 uint64
R9 uint64
R10 uint64
R11 uint64
R12 uint64
R13 uint64
R14 uint64
R15 uint64
Rdi uint64
Rsi uint64
Rbp uint64
Rbx uint64
Rdx uint64
Rax uint64
Rcx uint64
Rsp uint64
Rip uint64
Eflags uint64
Cs uint16
Gs uint16 // always 0 on amd64.
Fs uint16 // always 0 on amd64.
Ss uint16 // only restored if _UC_STRICT_RESTORE_SS (unsupported).
Err uint64
Trapno uint64
Oldmask linux.SignalSet
Cr2 uint64
// Pointer to a struct _fpstate.
Fpstate uint64
Reserved [8]uint64
}
// Flags for UContext64.Flags.
const (
_UC_FP_XSTATE = 1
_UC_SIGCONTEXT_SS = 2
_UC_STRICT_RESTORE_SS = 4
)
// UContext64 is equivalent to ucontext_t on 64-bit x86.
//
// +marshal
type UContext64 struct {
Flags uint64
Link uint64
Stack linux.SignalStack
MContext SignalContext64
Sigset linux.SignalSet
}
// SignalSetup implements Context.SignalSetup. (Compare to Linux's
// arch/x86/kernel/signal.c:__setup_rt_frame().)
func (c *Context64) SignalSetup(st *Stack, act *linux.SigAction, info *linux.SignalInfo, alt *linux.SignalStack, sigset linux.SignalSet, featureSet cpuid.FeatureSet) error {
// "The 128-byte area beyond the location pointed to by %rsp is considered
// to be reserved and shall not be modified by signal or interrupt
// handlers. ... leaf functions may use this area for their entire stack
// frame, rather than adjusting the stack pointer in the prologue and
// epilogue." - AMD64 ABI
//
// (But this doesn't apply if we're starting at the top of the signal
// stack, in which case there is no following stack frame.)
sp := st.Bottom
if !(alt.IsEnabled() && sp == alt.Top()) {
sp -= 128
}
// Allocate space for floating point state on the stack.
_, fpAlign := featureSet.ExtendedStateSize()
fpState := c.fpState.Slice()
fpSize := len(fpState) + fpu.FP_XSTATE_MAGIC2_SIZE
fpStart := (sp - hostarch.Addr(fpSize)) & ^hostarch.Addr(fpAlign-1)
// Construct the UContext64 now since we need its size.
uc := &UContext64{
// No _UC_STRICT_RESTORE_SS: we don't allow SS changes.
Flags: _UC_SIGCONTEXT_SS,
Stack: *alt,
MContext: SignalContext64{
R8: c.Regs.R8,
R9: c.Regs.R9,
R10: c.Regs.R10,
R11: c.Regs.R11,
R12: c.Regs.R12,
R13: c.Regs.R13,
R14: c.Regs.R14,
R15: c.Regs.R15,
Rdi: c.Regs.Rdi,
Rsi: c.Regs.Rsi,
Rbp: c.Regs.Rbp,
Rbx: c.Regs.Rbx,
Rdx: c.Regs.Rdx,
Rax: c.Regs.Rax,
Rcx: c.Regs.Rcx,
Rsp: c.Regs.Rsp,
Rip: c.Regs.Rip,
Eflags: c.Regs.Eflags,
Cs: uint16(c.Regs.Cs),
Ss: uint16(c.Regs.Ss),
Oldmask: sigset,
Fpstate: uint64(fpStart),
},
Sigset: sigset,
}
if featureSet.UseXsave() {
uc.Flags |= _UC_FP_XSTATE
}
// TODO(gvisor.dev/issue/159): Set SignalContext64.Err, Trapno, and Cr2
// based on the fault that caused the signal. For now, leave Err and
// Trapno unset and assume CR2 == info.Addr() for SIGSEGVs and
// SIGBUSes.
if linux.Signal(info.Signo) == linux.SIGSEGV || linux.Signal(info.Signo) == linux.SIGBUS {
uc.MContext.Cr2 = info.Addr()
}
// "... the value (%rsp+8) is always a multiple of 16 (...) when
// control is transferred to the function entry point." - AMD64 ABI
ucSize := uc.SizeBytes()
// st.Arch.Width() is for the restorer address. sizeof(siginfo) == 128.
frameSize := int(st.Arch.Width()) + ucSize + 128
frameStart := (fpStart-hostarch.Addr(frameSize)) & ^hostarch.Addr(15) - 8
frameEnd := frameStart + hostarch.Addr(frameSize)
// Prior to proceeding, figure out if the frame will exhaust the range
// for the signal stack. This is not allowed, and should immediately
// force signal delivery (reverting to the default handler).
if act.Flags&linux.SA_ONSTACK != 0 && alt.IsEnabled() && !alt.Contains(frameStart) {
return unix.EFAULT
}
// Set up floating point state on the stack. Compare Linux's
// arch/x86/kernel/fpu/signal.c:copy_fpstate_to_sigframe().
if _, err := st.IO.CopyOut(context.Background(), fpStart, fpState[:fpu.FP_SW_FRAME_OFFSET], usermem.IOOpts{}); err != nil {
return err
}
fpsw := fpu.FPSoftwareFrame{
Magic1: fpu.FP_XSTATE_MAGIC1,
ExtendedSize: uint32(fpSize),
Xfeatures: fpu.XFEATURE_MASK_FPSSE | featureSet.ValidXCR0Mask(),
XstateSize: uint32(fpSize) - fpu.FP_XSTATE_MAGIC2_SIZE,
}
st.Bottom = fpStart + 512
if _, err := fpsw.CopyOut(st, StackBottomMagic); err != nil {
return err
}
if len(fpState) > 512 {
if _, err := st.IO.CopyOut(context.Background(), fpStart+512, fpState[512:], usermem.IOOpts{}); err != nil {
return err
}
}
st.Bottom = fpStart + hostarch.Addr(fpSize)
if _, err := primitive.CopyUint32Out(st, StackBottomMagic, fpu.FP_XSTATE_MAGIC2); err != nil {
return err
}
// Adjust the code.
info.FixSignalCodeForUser()
// Set up the stack frame.
st.Bottom = frameEnd
if _, err := info.CopyOut(st, StackBottomMagic); err != nil {
return err
}
infoAddr := st.Bottom
if _, err := uc.CopyOut(st, StackBottomMagic); err != nil {
return err
}
ucAddr := st.Bottom
if act.Flags&linux.SA_RESTORER != 0 {
// Push the restorer return address.
// Note that this doesn't need to be popped.
if _, err := primitive.CopyUint64Out(st, StackBottomMagic, act.Restorer); err != nil {
return err
}
} else {
// amd64 requires a restorer.
return unix.EFAULT
}
// Set up registers.
c.Regs.Rip = act.Handler
c.Regs.Rsp = uint64(st.Bottom)
c.Regs.Rdi = uint64(info.Signo)
c.Regs.Rsi = uint64(infoAddr)
c.Regs.Rdx = uint64(ucAddr)
c.Regs.Rax = 0
c.Regs.Eflags &^= eflagsDF | eflagsRF | eflagsTF
c.Regs.Ds = userDS
c.Regs.Es = userDS
c.Regs.Cs = userCS
c.Regs.Ss = userDS
// Clear floating point registers.
c.fpState.Reset()
return nil
}
// SignalRestore implements Context.SignalRestore. (Compare to Linux's
// arch/x86/kernel/signal.c:sys_rt_sigreturn().)
func (c *Context64) SignalRestore(st *Stack, rt bool, featureSet cpuid.FeatureSet) (linux.SignalSet, linux.SignalStack, error) {
// Copy out the stack frame.
var uc UContext64
if _, err := uc.CopyIn(st, StackBottomMagic); err != nil {
return 0, linux.SignalStack{}, err
}
var info linux.SignalInfo
if _, err := info.CopyIn(st, StackBottomMagic); err != nil {
return 0, linux.SignalStack{}, err
}
// Restore registers.
c.Regs.R8 = uc.MContext.R8
c.Regs.R9 = uc.MContext.R9
c.Regs.R10 = uc.MContext.R10
c.Regs.R11 = uc.MContext.R11
c.Regs.R12 = uc.MContext.R12
c.Regs.R13 = uc.MContext.R13
c.Regs.R14 = uc.MContext.R14
c.Regs.R15 = uc.MContext.R15
c.Regs.Rdi = uc.MContext.Rdi
c.Regs.Rsi = uc.MContext.Rsi
c.Regs.Rbp = uc.MContext.Rbp
c.Regs.Rbx = uc.MContext.Rbx
c.Regs.Rdx = uc.MContext.Rdx
c.Regs.Rax = uc.MContext.Rax
c.Regs.Rcx = uc.MContext.Rcx
c.Regs.Rsp = uc.MContext.Rsp
c.Regs.Rip = uc.MContext.Rip
c.Regs.Eflags = (c.Regs.Eflags & ^eflagsRestorable) | (uc.MContext.Eflags & eflagsRestorable)
c.Regs.Cs = uint64(uc.MContext.Cs) | 3
// N.B. _UC_STRICT_RESTORE_SS not supported.
c.Regs.Orig_rax = math.MaxUint64
// Restore floating point state. Compare Linux's
// arch/x86/kernel/fpu/signal.c:fpu__restore_sig().
if uc.MContext.Fpstate == 0 {
c.fpState.Reset()
} else {
fpsw := fpu.FPSoftwareFrame{}
st.Bottom = hostarch.Addr(uc.MContext.Fpstate + fpu.FP_SW_FRAME_OFFSET)
if _, err := fpsw.CopyIn(st, StackBottomMagic); err != nil {
c.fpState.Reset()
return 0, linux.SignalStack{}, err
}
if fpsw.Magic1 != fpu.FP_XSTATE_MAGIC1 ||
fpsw.XstateSize < fpu.FXSAVE_AREA_SIZE ||
fpsw.XstateSize > fpsw.ExtendedSize {
c.fpState.Reset()
return 0, linux.SignalStack{}, linuxerr.EFAULT
}
fpState := c.fpState.Slice()
fpSize := fpsw.XstateSize
if int(fpSize) < len(fpState) {
// The signal frame FPU state is smaller than expected. This can happen after S/R.
c.fpState.Reset()
fpState = fpState[:fpSize]
}
if _, err := st.IO.CopyIn(context.Background(), hostarch.Addr(uc.MContext.Fpstate), fpState, usermem.IOOpts{}); err != nil {
c.fpState.Reset()
return 0, linux.SignalStack{}, err
}
c.fpState.SanitizeUser(featureSet)
}
return uc.Sigset, uc.Stack, nil
}
|