1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fuse
import (
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/usermem"
"gvisor.dev/gvisor/pkg/waiter"
)
const fuseDevMinor = 229
// This is equivalent to linux.SizeOfFUSEHeaderIn
const fuseHeaderOutSize = 16
// fuseDevice implements vfs.Device for /dev/fuse.
//
// +stateify savable
type fuseDevice struct{}
// Open implements vfs.Device.Open.
func (fuseDevice) Open(ctx context.Context, mnt *vfs.Mount, vfsd *vfs.Dentry, opts vfs.OpenOptions) (*vfs.FileDescription, error) {
var fd DeviceFD
if err := fd.vfsfd.Init(&fd, opts.Flags, mnt, vfsd, &vfs.FileDescriptionOptions{
UseDentryMetadata: true,
}); err != nil {
return nil, err
}
return &fd.vfsfd, nil
}
// DeviceFD implements vfs.FileDescriptionImpl for /dev/fuse.
//
// +stateify savable
type DeviceFD struct {
vfsfd vfs.FileDescription
vfs.FileDescriptionDefaultImpl
vfs.DentryMetadataFileDescriptionImpl
vfs.NoLockFD
// waitQueue is used to notify interested parties when the device becomes
// readable or writable.
waitQueue waiter.Queue
// fullQueueCh is a channel used to synchronize the readers with the writers.
// Writers (inbound requests to the filesystem) block if there are too many
// unprocessed in-flight requests.
fullQueueCh chan struct{} `state:".(int)"`
// mu protects all the queues, maps, buffers and cursors and nextOpID.
mu sync.Mutex `state:"nosave"`
// nextOpID is used to create new requests.
// +checklocks:mu
nextOpID linux.FUSEOpID
// queue is the list of requests that need to be processed by the FUSE server.
// +checklocks:mu
queue requestList
// numActiveRequests is the number of requests made by the Sentry that has
// yet to be responded to.
// +checklocks:mu
numActiveRequests uint64
// completions is used to map a request to its response. A Writer will use this
// to notify the caller of a completed response.
// +checklocks:mu
completions map[linux.FUSEOpID]*futureResponse
// writeBuf is the memory buffer used to copy in the FUSE out header from
// userspace.
// +checklocks:mu
writeBuf [fuseHeaderOutSize]byte
// conn is the FUSE connection that this FD is being used for.
// +checklocks:mu
conn *connection
}
// Release implements vfs.FileDescriptionImpl.Release.
func (fd *DeviceFD) Release(ctx context.Context) {
fd.mu.Lock()
defer fd.mu.Unlock()
if fd.conn != nil {
fd.conn.mu.Lock()
fd.conn.connected = false
fd.conn.mu.Unlock()
fd.conn.Abort(ctx) // +checklocksforce: fd.conn.fd.mu=fd.mu
fd.waitQueue.Notify(waiter.ReadableEvents)
fd.conn = nil
}
}
// connected returns true if fd.conn is set and the connection has not been
// aborted.
// +checklocks:fd.mu
func (fd *DeviceFD) connected() bool {
if fd.conn != nil {
fd.conn.mu.Lock()
defer fd.conn.mu.Unlock()
return fd.conn.connected
}
return false
}
// PRead implements vfs.FileDescriptionImpl.PRead.
func (fd *DeviceFD) PRead(ctx context.Context, dst usermem.IOSequence, offset int64, opts vfs.ReadOptions) (int64, error) {
// Operations on /dev/fuse don't make sense until a FUSE filesystem is
// mounted. If there is an active connection we know there is at least one
// filesystem mounted.
fd.mu.Lock()
defer fd.mu.Unlock()
if !fd.connected() {
return 0, linuxerr.EPERM
}
return 0, linuxerr.ENOSYS
}
// Read implements vfs.FileDescriptionImpl.Read.
func (fd *DeviceFD) Read(ctx context.Context, dst usermem.IOSequence, opts vfs.ReadOptions) (int64, error) {
fd.mu.Lock()
defer fd.mu.Unlock()
if !fd.connected() {
return 0, linuxerr.EPERM
}
// We require that any Read done on this filesystem have a sane minimum
// read buffer. It must have the capacity for the fixed parts of any request
// header (Linux uses the request header and the FUSEWriteIn header for this
// calculation) + the negotiated MaxWrite room for the data.
minBuffSize := linux.FUSE_MIN_READ_BUFFER
fd.conn.mu.Lock()
negotiatedMinBuffSize := linux.SizeOfFUSEHeaderIn + linux.SizeOfFUSEHeaderOut + fd.conn.maxWrite
fd.conn.mu.Unlock()
if minBuffSize < negotiatedMinBuffSize {
minBuffSize = negotiatedMinBuffSize
}
// If the read buffer is too small, error out.
if dst.NumBytes() < int64(minBuffSize) {
return 0, linuxerr.EINVAL
}
// Find the first valid request. For the normal case this loop only executes
// once.
var req *Request
for req = fd.queue.Front(); !fd.queue.Empty(); req = fd.queue.Front() {
if int64(req.hdr.Len) <= dst.NumBytes() {
break
}
// The request is too large so we cannot process it. All requests must be
// smaller than the negotiated size as specified by Connection.MaxWrite set
// as part of the FUSE_INIT handshake.
errno := -int32(unix.EIO)
if req.hdr.Opcode == linux.FUSE_SETXATTR {
errno = -int32(unix.E2BIG)
}
if err := fd.sendError(ctx, errno, req.hdr.Unique); err != nil {
return 0, err
}
fd.queue.Remove(req)
req = nil
}
if req == nil {
return 0, linuxerr.ErrWouldBlock
}
// We already checked the size: dst must be able to fit the whole request.
n, err := dst.CopyOut(ctx, req.data)
if err != nil {
return 0, err
}
if n != len(req.data) {
return 0, linuxerr.EIO
}
fd.queue.Remove(req)
// Remove noReply ones from the map of requests expecting a reply.
if req.noReply {
fd.numActiveRequests--
delete(fd.completions, req.hdr.Unique)
}
return int64(n), nil
}
// PWrite implements vfs.FileDescriptionImpl.PWrite.
func (fd *DeviceFD) PWrite(ctx context.Context, src usermem.IOSequence, offset int64, opts vfs.WriteOptions) (int64, error) {
// Operations on /dev/fuse don't make sense until a FUSE filesystem is
// mounted. If there is an active connection we know there is at least one
// filesystem mounted.
fd.mu.Lock()
defer fd.mu.Unlock()
if !fd.connected() {
return 0, linuxerr.EPERM
}
return 0, linuxerr.ENOSYS
}
// Write implements vfs.FileDescriptionImpl.Write.
func (fd *DeviceFD) Write(ctx context.Context, src usermem.IOSequence, opts vfs.WriteOptions) (int64, error) {
fd.mu.Lock()
defer fd.mu.Unlock()
if !fd.connected() {
return 0, linuxerr.EPERM
}
n, err := src.CopyIn(ctx, fd.writeBuf[:])
if err != nil {
return 0, err
}
var hdr linux.FUSEHeaderOut
hdr.UnmarshalBytes(fd.writeBuf[:])
fut, ok := fd.completions[hdr.Unique]
if !ok {
// Server sent us a response for a request we never sent, or for which we
// already received a reply (e.g. aborted), an unlikely event.
return 0, linuxerr.EINVAL
}
delete(fd.completions, hdr.Unique)
// Copy over the header into the future response. The rest of the payload
// will be copied over to the FR's data in the next iteration.
fut.hdr = &hdr
fut.data = make([]byte, fut.hdr.Len)
copy(fut.data, fd.writeBuf[:])
if fut.hdr.Len > uint32(len(fd.writeBuf)) {
src = src.DropFirst(len(fd.writeBuf))
n2, err := src.CopyIn(ctx, fut.data[len(fd.writeBuf):])
if err != nil {
return 0, err
}
n += n2
}
if err := fd.sendResponse(ctx, fut); err != nil {
return 0, err
}
return int64(n), nil
}
// Readiness implements vfs.FileDescriptionImpl.Readiness.
func (fd *DeviceFD) Readiness(mask waiter.EventMask) waiter.EventMask {
fd.mu.Lock()
defer fd.mu.Unlock()
var ready waiter.EventMask
if !fd.connected() {
ready |= waiter.EventErr
return ready & mask
}
// FD is always writable.
ready |= waiter.WritableEvents
if !fd.queue.Empty() {
// Have reqs available, FD is readable.
ready |= waiter.ReadableEvents
}
return ready & mask
}
// EventRegister implements waiter.Waitable.EventRegister.
func (fd *DeviceFD) EventRegister(e *waiter.Entry) error {
fd.mu.Lock()
defer fd.mu.Unlock()
fd.waitQueue.EventRegister(e)
return nil
}
// EventUnregister implements waiter.Waitable.EventUnregister.
func (fd *DeviceFD) EventUnregister(e *waiter.Entry) {
fd.mu.Lock()
defer fd.mu.Unlock()
fd.waitQueue.EventUnregister(e)
}
// Epollable implements FileDescriptionImpl.Epollable.
func (fd *DeviceFD) Epollable() bool {
return true
}
// Seek implements vfs.FileDescriptionImpl.Seek.
func (fd *DeviceFD) Seek(ctx context.Context, offset int64, whence int32) (int64, error) {
// Operations on /dev/fuse don't make sense until a FUSE filesystem is
// mounted. If there is an active connection we know there is at least one
// filesystem mounted.
fd.mu.Lock()
defer fd.mu.Unlock()
if !fd.connected() {
return 0, linuxerr.EPERM
}
return 0, linuxerr.ENOSYS
}
// sendResponse sends a response to the waiting task (if any).
//
// +checklocks:fd.mu
func (fd *DeviceFD) sendResponse(ctx context.Context, fut *futureResponse) error {
// Signal the task waiting on a response if any.
defer close(fut.ch)
// Signal that the queue is no longer full.
select {
case fd.fullQueueCh <- struct{}{}:
default:
}
fd.numActiveRequests--
if fut.async {
return fd.asyncCallBack(ctx, fut.getResponse())
}
return nil
}
// sendError sends an error response to the waiting task (if any) by calling sendResponse().
//
// +checklocks:fd.mu
func (fd *DeviceFD) sendError(ctx context.Context, errno int32, unique linux.FUSEOpID) error {
// Return the error to the calling task.
respHdr := linux.FUSEHeaderOut{
Len: linux.SizeOfFUSEHeaderOut,
Error: errno,
Unique: unique,
}
fut, ok := fd.completions[respHdr.Unique]
if !ok {
// A response for a request we never sent,
// or for which we already received a reply (e.g. aborted).
return linuxerr.EINVAL
}
delete(fd.completions, respHdr.Unique)
fut.hdr = &respHdr
return fd.sendResponse(ctx, fut)
}
// asyncCallBack executes pre-defined callback function for async requests.
// Currently used by: FUSE_INIT.
// +checklocks:fd.mu
func (fd *DeviceFD) asyncCallBack(ctx context.Context, r *Response) error {
switch r.opcode {
case linux.FUSE_INIT:
creds := auth.CredentialsFromContext(ctx)
rootUserNs := kernel.KernelFromContext(ctx).RootUserNamespace()
return fd.conn.InitRecv(r, creds.HasCapabilityIn(linux.CAP_SYS_ADMIN, rootUserNs))
// TODO(gvisor.dev/issue/3247): support async read: correctly process the response.
}
return nil
}
|