1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
|
// Copyright 2022 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package gofer
import (
"fmt"
"strings"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/lisafs"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/socket/unix/transport"
"gvisor.dev/gvisor/pkg/sentry/vfs"
)
func (fs *filesystem) handleAnameLisafs(ctx context.Context, rootInode lisafs.Inode) (lisafs.Inode, error) {
if fs.opts.aname == "/" {
return rootInode, nil
}
// Walk to the attach point from root inode. aname is always absolute.
rootFD := fs.client.NewFD(rootInode.ControlFD)
status, inodes, err := rootFD.WalkMultiple(ctx, strings.Split(fs.opts.aname, "/")[1:])
if err != nil {
return lisafs.Inode{}, err
}
// Close all intermediate FDs to the attach point.
rootFD.Close(ctx, false /* flush */)
numInodes := len(inodes)
for i := 0; i < numInodes-1; i++ {
curFD := fs.client.NewFD(inodes[i].ControlFD)
curFD.Close(ctx, false /* flush */)
}
switch status {
case lisafs.WalkSuccess:
return inodes[numInodes-1], nil
default:
if numInodes > 0 {
last := fs.client.NewFD(inodes[numInodes-1].ControlFD)
last.Close(ctx, false /* flush */)
}
log.Warningf("initClient failed because walk to attach point %q failed: lisafs.WalkStatus = %v", fs.opts.aname, status)
return lisafs.Inode{}, linuxerr.ENOENT
}
}
// lisafsDentry is a gofer dentry implementation. It represents a dentry backed
// by a lisafs connection.
//
// +stateify savable
type lisafsDentry struct {
dentry
// controlFD is used by lisafs to perform path based operations on this
// dentry. controlFD is immutable.
//
// if !controlFD.Ok(), this dentry represents a synthetic file, i.e. a
// file that does not exist on the remote filesystem. As of this writing, the
// only files that can be synthetic are sockets, pipes, and directories.
controlFD lisafs.ClientFD `state:"nosave"`
// If this dentry represents a regular file or directory, readFDLisa is a
// LISAFS FD used for reads by all regularFileFDs/directoryFDs representing
// this dentry. readFDLisa is protected by dentry.handleMu.
readFDLisa lisafs.ClientFD `state:"nosave"`
// If this dentry represents a regular file, writeFDLisa is the LISAFS FD
// used for writes by all regularFileFDs representing this dentry.
// readFDLisa and writeFDLisa may or may not represent the same LISAFS FD.
// Once either transitions from closed (Ok() == false) to open
// (Ok() == true), it may be mutated with dentry.handleMu locked, but cannot
// be closed until the dentry is destroyed. writeFDLisa is protected by
// dentry.handleMu.
writeFDLisa lisafs.ClientFD `state:"nosave"`
}
// newLisafsDentry creates a new dentry representing the given file. The dentry
// initially has no references, but is not cached; it is the caller's
// responsibility to set the dentry's reference count and/or call
// dentry.checkCachingLocked() as appropriate.
// newLisafsDentry takes ownership of ino.
func (fs *filesystem) newLisafsDentry(ctx context.Context, ino *lisafs.Inode) (*dentry, error) {
if ino.Stat.Mask&linux.STATX_TYPE == 0 {
ctx.Warningf("can't create gofer.dentry without file type")
fs.client.CloseFD(ctx, ino.ControlFD, false /* flush */)
return nil, linuxerr.EIO
}
if ino.Stat.Mode&linux.FileTypeMask == linux.ModeRegular && ino.Stat.Mask&linux.STATX_SIZE == 0 {
ctx.Warningf("can't create regular file gofer.dentry without file size")
fs.client.CloseFD(ctx, ino.ControlFD, false /* flush */)
return nil, linuxerr.EIO
}
inoKey := inoKeyFromStatx(&ino.Stat)
d := &lisafsDentry{
dentry: dentry{
fs: fs,
inoKey: inoKey,
ino: fs.inoFromKey(inoKey),
mode: atomicbitops.FromUint32(uint32(ino.Stat.Mode)),
uid: atomicbitops.FromUint32(uint32(fs.opts.dfltuid)),
gid: atomicbitops.FromUint32(uint32(fs.opts.dfltgid)),
blockSize: atomicbitops.FromUint32(hostarch.PageSize),
readFD: atomicbitops.FromInt32(-1),
writeFD: atomicbitops.FromInt32(-1),
mmapFD: atomicbitops.FromInt32(-1),
},
controlFD: fs.client.NewFD(ino.ControlFD),
}
if ino.Stat.Mask&linux.STATX_UID != 0 {
d.uid = atomicbitops.FromUint32(dentryUID(lisafs.UID(ino.Stat.UID)))
}
if ino.Stat.Mask&linux.STATX_GID != 0 {
d.gid = atomicbitops.FromUint32(dentryGID(lisafs.GID(ino.Stat.GID)))
}
if ino.Stat.Mask&linux.STATX_SIZE != 0 {
d.size = atomicbitops.FromUint64(ino.Stat.Size)
}
if ino.Stat.Blksize != 0 {
d.blockSize = atomicbitops.FromUint32(ino.Stat.Blksize)
}
if ino.Stat.Mask&linux.STATX_ATIME != 0 {
d.atime = atomicbitops.FromInt64(dentryTimestamp(ino.Stat.Atime))
} else {
d.atime = atomicbitops.FromInt64(fs.clock.Now().Nanoseconds())
}
if ino.Stat.Mask&linux.STATX_MTIME != 0 {
d.mtime = atomicbitops.FromInt64(dentryTimestamp(ino.Stat.Mtime))
} else {
d.mtime = atomicbitops.FromInt64(fs.clock.Now().Nanoseconds())
}
if ino.Stat.Mask&linux.STATX_CTIME != 0 {
d.ctime = atomicbitops.FromInt64(dentryTimestamp(ino.Stat.Ctime))
} else {
// Approximate ctime with mtime if ctime isn't available.
d.ctime = atomicbitops.FromInt64(d.mtime.Load())
}
if ino.Stat.Mask&linux.STATX_BTIME != 0 {
d.btime = atomicbitops.FromInt64(dentryTimestamp(ino.Stat.Btime))
}
if ino.Stat.Mask&linux.STATX_NLINK != 0 {
d.nlink = atomicbitops.FromUint32(ino.Stat.Nlink)
} else {
if ino.Stat.Mode&linux.FileTypeMask == linux.ModeDirectory {
d.nlink = atomicbitops.FromUint32(2)
} else {
d.nlink = atomicbitops.FromUint32(1)
}
}
d.dentry.init(d)
fs.syncMu.Lock()
fs.syncableDentries.PushBack(&d.syncableListEntry)
fs.syncMu.Unlock()
return &d.dentry, nil
}
func (d *lisafsDentry) openHandle(ctx context.Context, flags uint32) (handle, error) {
openFD, hostFD, err := d.controlFD.OpenAt(ctx, flags)
if err != nil {
return noHandle, err
}
return handle{
fdLisa: d.controlFD.Client().NewFD(openFD),
fd: int32(hostFD),
}, nil
}
func (d *lisafsDentry) updateHandles(ctx context.Context, h handle, readable, writable bool) {
// Switch to new LISAFS FDs. Note that the read, write and mmap host FDs are
// updated separately.
oldReadFD := lisafs.InvalidFDID
if readable {
oldReadFD = d.readFDLisa.ID()
d.readFDLisa = h.fdLisa
}
oldWriteFD := lisafs.InvalidFDID
if writable {
oldWriteFD = d.writeFDLisa.ID()
d.writeFDLisa = h.fdLisa
}
// NOTE(b/141991141): Close old FDs before making new fids visible (by
// unlocking d.handleMu).
if oldReadFD.Ok() {
d.fs.client.CloseFD(ctx, oldReadFD, false /* flush */)
}
if oldWriteFD.Ok() && oldReadFD != oldWriteFD {
d.fs.client.CloseFD(ctx, oldWriteFD, false /* flush */)
}
}
// Precondition: d.metadataMu must be locked.
//
// +checklocks:d.metadataMu
func (d *lisafsDentry) updateMetadataLocked(ctx context.Context, h handle) error {
handleMuRLocked := false
if !h.fdLisa.Ok() {
// Use open FDs in preferenece to the control FD. This may be significantly
// more efficient in some implementations. Prefer a writable FD over a
// readable one since some filesystem implementations may update a writable
// FD's metadata after writes, without making metadata updates immediately
// visible to read-only FDs representing the same file.
d.handleMu.RLock()
switch {
case d.writeFDLisa.Ok():
h.fdLisa = d.writeFDLisa
handleMuRLocked = true
case d.readFDLisa.Ok():
h.fdLisa = d.readFDLisa
handleMuRLocked = true
default:
h.fdLisa = d.controlFD
d.handleMu.RUnlock()
}
}
var stat linux.Statx
err := h.fdLisa.StatTo(ctx, &stat)
if handleMuRLocked {
// handleMu must be released before updateMetadataFromStatLocked().
d.handleMu.RUnlock() // +checklocksforce: complex case.
}
if err != nil {
return err
}
d.updateMetadataFromStatxLocked(&stat)
return nil
}
func chmod(ctx context.Context, controlFD lisafs.ClientFD, mode uint16) error {
setStat := linux.Statx{
Mask: linux.STATX_MODE,
Mode: mode,
}
_, failureErr, err := controlFD.SetStat(ctx, &setStat)
if err != nil {
return err
}
return failureErr
}
func (d *lisafsDentry) destroy(ctx context.Context) {
if d.readFDLisa.Ok() && d.readFDLisa.ID() != d.writeFDLisa.ID() {
d.readFDLisa.Close(ctx, false /* flush */)
}
if d.writeFDLisa.Ok() {
d.writeFDLisa.Close(ctx, false /* flush */)
}
if d.controlFD.Ok() {
// Close the control FD. Propagate the Close RPCs immediately to the server
// if the dentry being destroyed is a deleted regular file. This is to
// release the disk space on remote immediately. This will flush the above
// read/write lisa FDs as well.
flushClose := d.isDeleted() && d.isRegularFile()
d.controlFD.Close(ctx, flushClose)
}
}
func (d *lisafsDentry) getRemoteChild(ctx context.Context, name string) (*dentry, error) {
childInode, err := d.controlFD.Walk(ctx, name)
if err != nil {
return nil, err
}
return d.fs.newLisafsDentry(ctx, &childInode)
}
// Preconditions:
// - fs.renameMu must be locked.
// - d.opMu must be locked.
// - d.isDir().
// - !rp.done() && rp.Component() is not "." or "..".
//
// Postcondition: The returned dentry is already cached appropriately.
func (d *lisafsDentry) getRemoteChildAndWalkPathLocked(ctx context.Context, rp resolvingPath, ds **[]*dentry) (*dentry, error) {
// Collect as many path components as possible to walk.
var namesArr [16]string // arbitrarily sized array to help avoid slice allocation.
names := namesArr[:0]
rp.getComponents(func(name string) bool {
if name == "." {
return true
}
if name == ".." {
return false
}
names = append(names, name)
return true
})
// Walk as much of the path as possible in 1 RPC.
_, inodes, err := d.controlFD.WalkMultiple(ctx, names)
if err != nil {
return nil, err
}
if len(inodes) == 0 {
// d.opMu is locked. So a new child could not have appeared concurrently.
// It should be safe to mark this as a negative entry.
d.childrenMu.Lock()
defer d.childrenMu.Unlock()
d.cacheNegativeLookupLocked(names[0])
return nil, linuxerr.ENOENT
}
// Add the walked inodes into the dentry tree.
startParent := &d.dentry
curParent := startParent
curParentLock := func() {
if curParent != startParent {
curParent.opMu.RLock()
}
curParent.childrenMu.Lock()
}
curParentUnlock := func() {
curParent.childrenMu.Unlock()
if curParent != startParent {
curParent.opMu.RUnlock() // +checklocksforce: locked via curParentLock().
}
}
var ret *dentry
var dentryCreationErr error
for i := range inodes {
if dentryCreationErr != nil {
d.fs.client.CloseFD(ctx, inodes[i].ControlFD, false /* flush */)
continue
}
curParentLock()
// Did we race with another walk + cache operation?
child, ok := curParent.children[names[i]] // +checklocksforce: locked via curParentLock()
if ok && child != nil {
// We raced. Clean up the new inode and proceed with
// the cached child.
d.fs.client.CloseFD(ctx, inodes[i].ControlFD, false /* flush */)
} else {
// Create and cache the new dentry.
var err error
child, err = d.fs.newLisafsDentry(ctx, &inodes[i])
if err != nil {
dentryCreationErr = err
curParentUnlock()
continue
}
curParent.cacheNewChildLocked(child, names[i]) // +checklocksforce: locked via curParentLock().
}
curParentUnlock()
// For now, child has 0 references, so our caller should call
// child.checkCachingLocked(). curParent gained a ref so we should also
// call curParent.checkCachingLocked() so it can be removed from the cache
// if needed. We only do that for the first iteration because all
// subsequent parents would have already been added to ds.
if i == 0 {
*ds = appendDentry(*ds, curParent)
}
*ds = appendDentry(*ds, child)
curParent = child
if i == 0 {
ret = child
}
}
return ret, dentryCreationErr
}
func (d *lisafsDentry) newChildDentry(ctx context.Context, childIno *lisafs.Inode, childName string) (*dentry, error) {
child, err := d.fs.newLisafsDentry(ctx, childIno)
if err != nil {
if err := d.controlFD.UnlinkAt(ctx, childName, 0 /* flags */); err != nil {
log.Warningf("failed to clean up created child %s after newLisafsDentry() failed: %v", childName, err)
}
}
return child, err
}
func (d *lisafsDentry) mknod(ctx context.Context, name string, creds *auth.Credentials, opts *vfs.MknodOptions) (*dentry, error) {
if _, ok := opts.Endpoint.(transport.HostBoundEndpoint); !ok {
childInode, err := d.controlFD.MknodAt(ctx, name, opts.Mode, lisafs.UID(creds.EffectiveKUID), lisafs.GID(creds.EffectiveKGID), opts.DevMinor, opts.DevMajor)
if err != nil {
return nil, err
}
return d.newChildDentry(ctx, &childInode, name)
}
// This mknod(2) is coming from unix bind(2), as opts.Endpoint is set.
sockType := opts.Endpoint.(transport.Endpoint).Type()
childInode, boundSocketFD, err := d.controlFD.BindAt(ctx, sockType, name, opts.Mode, lisafs.UID(creds.EffectiveKUID), lisafs.GID(creds.EffectiveKGID))
if err != nil {
return nil, err
}
hbep := opts.Endpoint.(transport.HostBoundEndpoint)
if err := hbep.SetBoundSocketFD(ctx, boundSocketFD); err != nil {
if err := d.controlFD.UnlinkAt(ctx, name, 0 /* flags */); err != nil {
log.Warningf("failed to clean up socket which was created by BindAt RPC: %v", err)
}
d.fs.client.CloseFD(ctx, childInode.ControlFD, false /* flush */)
return nil, err
}
child, err := d.newChildDentry(ctx, &childInode, name)
if err != nil {
hbep.ResetBoundSocketFD(ctx)
return nil, err
}
// Set the endpoint on the newly created child dentry.
child.endpoint = opts.Endpoint
return child, nil
}
func (d *lisafsDentry) link(ctx context.Context, target *lisafsDentry, name string) (*dentry, error) {
linkInode, err := d.controlFD.LinkAt(ctx, target.controlFD.ID(), name)
if err != nil {
return nil, err
}
// TODO(gvisor.dev/issue/6739): Hard linked dentries should share the same
// inode fields.
return d.newChildDentry(ctx, &linkInode, name)
}
func (d *lisafsDentry) mkdir(ctx context.Context, name string, mode linux.FileMode, uid auth.KUID, gid auth.KGID) (*dentry, error) {
childDirInode, err := d.controlFD.MkdirAt(ctx, name, mode, lisafs.UID(uid), lisafs.GID(gid))
if err != nil {
return nil, err
}
return d.newChildDentry(ctx, &childDirInode, name)
}
func (d *lisafsDentry) symlink(ctx context.Context, name, target string, creds *auth.Credentials) (*dentry, error) {
symlinkInode, err := d.controlFD.SymlinkAt(ctx, name, target, lisafs.UID(creds.EffectiveKUID), lisafs.GID(creds.EffectiveKGID))
if err != nil {
return nil, err
}
return d.newChildDentry(ctx, &symlinkInode, name)
}
func (d *lisafsDentry) openCreate(ctx context.Context, name string, flags uint32, mode linux.FileMode, uid auth.KUID, gid auth.KGID) (*dentry, handle, error) {
ino, openFD, hostFD, err := d.controlFD.OpenCreateAt(ctx, name, flags, mode, lisafs.UID(uid), lisafs.GID(gid))
if err != nil {
return nil, noHandle, err
}
h := handle{
fdLisa: d.fs.client.NewFD(openFD),
fd: int32(hostFD),
}
child, err := d.fs.newLisafsDentry(ctx, &ino)
if err != nil {
h.close(ctx)
return nil, noHandle, err
}
return child, h, nil
}
// lisafsGetdentsCount is the number of bytes of dirents to read from the
// server in each Getdents RPC. This value is consistent with vfs1 client.
const lisafsGetdentsCount = int32(64 * 1024)
// Preconditions:
// - getDirents may not be called concurrently with another getDirents call.
func (d *lisafsDentry) getDirentsLocked(ctx context.Context, recordDirent func(name string, key inoKey, dType uint8)) error {
// shouldSeek0 indicates whether the server should SEEK to 0 before reading
// directory entries.
shouldSeek0 := true
for {
count := lisafsGetdentsCount
if shouldSeek0 {
// See lisafs.Getdents64Req.Count.
count = -count
shouldSeek0 = false
}
dirents, err := d.readFDLisa.Getdents64(ctx, count)
if err != nil {
return err
}
if len(dirents) == 0 {
return nil
}
for i := range dirents {
name := string(dirents[i].Name)
if name == "." || name == ".." {
continue
}
recordDirent(name, inoKey{
ino: uint64(dirents[i].Ino),
devMinor: uint32(dirents[i].DevMinor),
devMajor: uint32(dirents[i].DevMajor),
}, uint8(dirents[i].Type))
}
}
}
func flush(ctx context.Context, fd lisafs.ClientFD) error {
if fd.Ok() {
return fd.Flush(ctx)
}
return nil
}
func (d *lisafsDentry) statfs(ctx context.Context) (linux.Statfs, error) {
var statFS lisafs.StatFS
if err := d.controlFD.StatFSTo(ctx, &statFS); err != nil {
return linux.Statfs{}, err
}
return linux.Statfs{
BlockSize: statFS.BlockSize,
FragmentSize: statFS.BlockSize,
Blocks: statFS.Blocks,
BlocksFree: statFS.BlocksFree,
BlocksAvailable: statFS.BlocksAvailable,
Files: statFS.Files,
FilesFree: statFS.FilesFree,
NameLength: statFS.NameLength,
}, nil
}
func (d *lisafsDentry) restoreFile(ctx context.Context, inode *lisafs.Inode, opts *vfs.CompleteRestoreOptions) error {
d.controlFD = d.fs.client.NewFD(inode.ControlFD)
// Gofers do not preserve inoKey across checkpoint/restore, so:
//
// - We must assume that the remote filesystem did not change in a way that
// would invalidate dentries, since we can't revalidate dentries by
// checking inoKey.
//
// - We need to associate the new inoKey with the existing d.ino.
d.inoKey = inoKeyFromStatx(&inode.Stat)
d.fs.inoMu.Lock()
d.fs.inoByKey[d.inoKey] = d.ino
d.fs.inoMu.Unlock()
// Check metadata stability before updating metadata.
d.metadataMu.Lock()
defer d.metadataMu.Unlock()
if d.isRegularFile() {
if opts.ValidateFileSizes {
if inode.Stat.Mask&linux.STATX_SIZE == 0 {
return vfs.ErrCorruption{fmt.Errorf("gofer.dentry(%q).restoreFile: file size validation failed: file size not available", genericDebugPathname(&d.dentry))}
}
if d.size.RacyLoad() != inode.Stat.Size {
return vfs.ErrCorruption{fmt.Errorf("gofer.dentry(%q).restoreFile: file size validation failed: size changed from %d to %d", genericDebugPathname(&d.dentry), d.size.Load(), inode.Stat.Size)}
}
}
if opts.ValidateFileModificationTimestamps {
if inode.Stat.Mask&linux.STATX_MTIME == 0 {
return vfs.ErrCorruption{fmt.Errorf("gofer.dentry(%q).restoreFile: mtime validation failed: mtime not available", genericDebugPathname(&d.dentry))}
}
if want := dentryTimestamp(inode.Stat.Mtime); d.mtime.RacyLoad() != want {
return vfs.ErrCorruption{fmt.Errorf("gofer.dentry(%q).restoreFile: mtime validation failed: mtime changed from %+v to %+v", genericDebugPathname(&d.dentry), linux.NsecToStatxTimestamp(d.mtime.RacyLoad()), linux.NsecToStatxTimestamp(want))}
}
}
}
if !d.cachedMetadataAuthoritative() {
d.updateMetadataFromStatxLocked(&inode.Stat)
}
if rw, ok := d.fs.savedDentryRW[&d.dentry]; ok {
if err := d.ensureSharedHandle(ctx, rw.read, rw.write, false /* trunc */); err != nil {
return err
}
}
return nil
}
// doRevalidationLisafs stats all dentries in `state`. It will update or
// invalidate dentries in the cache based on the result.
//
// Preconditions:
// - fs.renameMu must be locked.
// - InteropModeShared is in effect.
func doRevalidationLisafs(ctx context.Context, vfsObj *vfs.VirtualFilesystem, state *revalidateState, ds **[]*dentry) error {
start := state.start.impl.(*lisafsDentry)
// Populate state.names.
state.names = state.names[:0] // For sanity.
if state.refreshStart {
state.names = append(state.names, "")
}
for _, d := range state.dentries {
state.names = append(state.names, d.name)
}
// Lock metadata on all dentries *before* getting attributes for them.
if state.refreshStart {
start.metadataMu.Lock()
defer start.metadataMu.Unlock()
}
for _, d := range state.dentries {
d.metadataMu.Lock()
}
// lastUnlockedDentry keeps track of the dentries in state.dentries that have
// already had their metadataMu unlocked. Avoid defer unlock in the loop
// above to avoid heap allocation.
lastUnlockedDentry := -1
defer func() {
// Advance to the first unevaluated dentry and unlock the remaining
// dentries.
for lastUnlockedDentry++; lastUnlockedDentry < len(state.dentries); lastUnlockedDentry++ {
state.dentries[lastUnlockedDentry].metadataMu.Unlock()
}
}()
// Make WalkStat RPC.
stats, err := start.controlFD.WalkStat(ctx, state.names)
if err != nil {
return err
}
if state.refreshStart {
if len(stats) > 0 {
// First dentry is where the search is starting, just update attributes
// since it cannot be replaced.
start.updateMetadataFromStatxLocked(&stats[0]) // +checklocksforce: see above.
stats = stats[1:]
}
}
for i := 0; i < len(state.dentries); i++ {
d := state.dentries[i]
found := i < len(stats)
// Advance lastUnlockedDentry. It is the responsibility of this for loop
// block to unlock d.metadataMu.
lastUnlockedDentry = i
// Note that synthetic dentries will always fail this comparison check.
if !found || d.inoKey != inoKeyFromStatx(&stats[i]) {
d.metadataMu.Unlock()
if !found && d.isSynthetic() {
// We have a synthetic file, and no remote file has arisen to replace
// it.
return nil
}
// The file at this path has changed or no longer exists. Mark the
// dentry invalidated.
d.invalidate(ctx, vfsObj, ds)
return nil
}
// The file at this path hasn't changed. Just update cached metadata.
d.impl.(*lisafsDentry).updateMetadataFromStatxLocked(&stats[i]) // +checklocksforce: see above.
d.metadataMu.Unlock()
}
return nil
}
|