1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package gofer
import (
"fmt"
"io"
"math"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/metric"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/fsmetric"
"gvisor.dev/gvisor/pkg/sentry/fsutil"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/usermem"
)
func (d *dentry) isRegularFile() bool {
return d.fileType() == linux.S_IFREG
}
// +stateify savable
type regularFileFD struct {
fileDescription
// off is the file offset. off is protected by mu.
mu sync.Mutex `state:"nosave"`
off int64
}
func newRegularFileFD(mnt *vfs.Mount, d *dentry, flags uint32) (*regularFileFD, error) {
fd := ®ularFileFD{}
fd.LockFD.Init(&d.locks)
if err := fd.vfsfd.Init(fd, flags, mnt, &d.vfsd, &vfs.FileDescriptionOptions{
AllowDirectIO: true,
}); err != nil {
return nil, err
}
if fd.vfsfd.IsWritable() && (d.mode.Load()&0111 != 0) {
metric.SuspiciousOperationsMetric.Increment(&metric.SuspiciousOperationsTypeOpenedWriteExecuteFile)
}
if d.mmapFD.Load() >= 0 {
fsmetric.GoferOpensHost.Increment()
} else {
fsmetric.GoferOpens9P.Increment()
}
return fd, nil
}
// Release implements vfs.FileDescriptionImpl.Release.
func (fd *regularFileFD) Release(context.Context) {
}
// OnClose implements vfs.FileDescriptionImpl.OnClose.
func (fd *regularFileFD) OnClose(ctx context.Context) error {
if !fd.vfsfd.IsWritable() {
return nil
}
d := fd.dentry()
if d.fs.opts.interop == InteropModeExclusive {
// d may have dirty pages that we won't write back now (and wouldn't
// have in VFS1), making a flushf RPC ineffective. If this is the case,
// skip the flushf.
//
// Note that it's also possible to have dirty pages under other interop
// modes if forcePageCache is in effect; we conservatively assume that
// applications have some way of tolerating this and still want the
// flushf.
d.dataMu.RLock()
haveDirtyPages := !d.dirty.IsEmpty()
d.dataMu.RUnlock()
if haveDirtyPages {
return nil
}
}
return d.flush(ctx)
}
// Allocate implements vfs.FileDescriptionImpl.Allocate.
func (fd *regularFileFD) Allocate(ctx context.Context, mode, offset, length uint64) error {
d := fd.dentry()
return d.doAllocate(ctx, offset, length, func() error {
return d.allocate(ctx, mode, offset, length)
})
}
// PRead implements vfs.FileDescriptionImpl.PRead.
func (fd *regularFileFD) PRead(ctx context.Context, dst usermem.IOSequence, offset int64, opts vfs.ReadOptions) (int64, error) {
start := fsmetric.StartReadWait()
d := fd.dentry()
defer func() {
if d.readFD.Load() >= 0 {
fsmetric.GoferReadsHost.Increment()
fsmetric.FinishReadWait(fsmetric.GoferReadWaitHost, start)
} else {
fsmetric.GoferReads9P.Increment()
fsmetric.FinishReadWait(fsmetric.GoferReadWait9P, start)
}
}()
if offset < 0 {
return 0, linuxerr.EINVAL
}
// Check that flags are supported.
//
// TODO(gvisor.dev/issue/2601): Support select preadv2 flags.
if opts.Flags&^linux.RWF_HIPRI != 0 {
return 0, linuxerr.EOPNOTSUPP
}
// Check for reading at EOF before calling into MM (but not under
// InteropModeShared, which makes d.size unreliable).
if d.cachedMetadataAuthoritative() && uint64(offset) >= d.size.Load() {
return 0, io.EOF
}
var (
n int64
readErr error
)
if fd.vfsfd.StatusFlags()&linux.O_DIRECT != 0 {
// Write dirty cached pages that will be touched by the read back to
// the remote file.
if err := d.writeback(ctx, offset, dst.NumBytes()); err != nil {
return 0, err
}
rw := getDentryReadWriter(ctx, d, offset)
// Require the read to go to the remote file.
rw.direct = true
n, readErr = dst.CopyOutFrom(ctx, rw)
putDentryReadWriter(rw)
if d.fs.opts.interop != InteropModeShared {
// Compare Linux's mm/filemap.c:do_generic_file_read() => file_accessed().
d.touchAtimeLocked(fd.vfsfd.Mount())
}
} else {
rw := getDentryReadWriter(ctx, d, offset)
n, readErr = dst.CopyOutFrom(ctx, rw)
putDentryReadWriter(rw)
if d.fs.opts.interop != InteropModeShared {
// Compare Linux's mm/filemap.c:do_generic_file_read() => file_accessed().
d.touchAtime(fd.vfsfd.Mount())
}
}
return n, readErr
}
// Read implements vfs.FileDescriptionImpl.Read.
func (fd *regularFileFD) Read(ctx context.Context, dst usermem.IOSequence, opts vfs.ReadOptions) (int64, error) {
fd.mu.Lock()
n, err := fd.PRead(ctx, dst, fd.off, opts)
fd.off += n
fd.mu.Unlock()
return n, err
}
// PWrite implements vfs.FileDescriptionImpl.PWrite.
func (fd *regularFileFD) PWrite(ctx context.Context, src usermem.IOSequence, offset int64, opts vfs.WriteOptions) (int64, error) {
n, _, err := fd.pwrite(ctx, src, offset, opts)
return n, err
}
// pwrite returns the number of bytes written, final offset, error. The final
// offset should be ignored by PWrite.
func (fd *regularFileFD) pwrite(ctx context.Context, src usermem.IOSequence, offset int64, opts vfs.WriteOptions) (written, finalOff int64, err error) {
if offset < 0 {
return 0, offset, linuxerr.EINVAL
}
// Check that flags are supported.
//
// TODO(gvisor.dev/issue/2601): Support select pwritev2 flags.
if opts.Flags&^linux.RWF_HIPRI != 0 {
return 0, offset, linuxerr.EOPNOTSUPP
}
d := fd.dentry()
d.metadataMu.Lock()
defer d.metadataMu.Unlock()
// If the fd was opened with O_APPEND, make sure the file size is updated.
// There is a possible race here if size is modified externally after
// metadata cache is updated.
if fd.vfsfd.StatusFlags()&linux.O_APPEND != 0 && !d.cachedMetadataAuthoritative() {
if err := d.refreshSizeLocked(ctx); err != nil {
return 0, offset, err
}
}
// Set offset to file size if the fd was opened with O_APPEND.
if fd.vfsfd.StatusFlags()&linux.O_APPEND != 0 {
// Holding d.metadataMu is sufficient for reading d.size.
offset = int64(d.size.RacyLoad())
}
limit, err := vfs.CheckLimit(ctx, offset, src.NumBytes())
if err != nil {
return 0, offset, err
}
src = src.TakeFirst64(limit)
if d.fs.opts.interop != InteropModeShared {
// Compare Linux's mm/filemap.c:__generic_file_write_iter() =>
// file_update_time(). This is d.touchCMtime(), but without locking
// d.metadataMu (recursively).
d.touchCMtimeLocked()
}
rw := getDentryReadWriter(ctx, d, offset)
defer putDentryReadWriter(rw)
if fd.vfsfd.StatusFlags()&linux.O_DIRECT != 0 {
if err := fd.writeCache(ctx, d, offset, src); err != nil {
return 0, offset, err
}
// Require the write to go to the remote file.
rw.direct = true
}
n, err := src.CopyInTo(ctx, rw)
if err != nil {
return n, offset + n, err
}
if n > 0 && fd.vfsfd.StatusFlags()&(linux.O_DSYNC|linux.O_SYNC) != 0 {
// Note that if any of the following fail, then we can't guarantee that
// any data was actually written with the semantics of O_DSYNC or
// O_SYNC, so we return zero bytes written. Compare Linux's
// mm/filemap.c:generic_file_write_iter() =>
// include/linux/fs.h:generic_write_sync().
//
// Write dirty cached pages touched by the write back to the remote
// file.
if err := d.writeback(ctx, offset, src.NumBytes()); err != nil {
return 0, offset, err
}
// Request the remote filesystem to sync the remote file.
if err := d.syncRemoteFile(ctx); err != nil {
return 0, offset, err
}
}
// As with Linux, writing clears the setuid and setgid bits.
if n > 0 {
oldMode := d.mode.Load()
// If setuid or setgid were set, update d.mode and propagate
// changes to the host.
if newMode := vfs.ClearSUIDAndSGID(oldMode); newMode != oldMode {
if err := d.chmod(ctx, uint16(newMode)); err != nil {
return 0, offset, err
}
d.mode.Store(newMode)
}
}
return n, offset + n, nil
}
func (fd *regularFileFD) writeCache(ctx context.Context, d *dentry, offset int64, src usermem.IOSequence) error {
// Write dirty cached pages that will be touched by the write back to
// the remote file.
if err := d.writeback(ctx, offset, src.NumBytes()); err != nil {
return err
}
// Remove touched pages from the cache.
pgstart := hostarch.PageRoundDown(uint64(offset))
pgend, ok := hostarch.PageRoundUp(uint64(offset + src.NumBytes()))
if !ok {
return linuxerr.EINVAL
}
mr := memmap.MappableRange{pgstart, pgend}
var freed []memmap.FileRange
d.dataMu.Lock()
cseg := d.cache.LowerBoundSegment(mr.Start)
for cseg.Ok() && cseg.Start() < mr.End {
cseg = d.cache.Isolate(cseg, mr)
freed = append(freed, memmap.FileRange{cseg.Value(), cseg.Value() + cseg.Range().Length()})
cseg = d.cache.Remove(cseg).NextSegment()
}
d.dataMu.Unlock()
// Invalidate mappings of removed pages.
d.mapsMu.Lock()
d.mappings.Invalidate(mr, memmap.InvalidateOpts{})
d.mapsMu.Unlock()
// Finally free pages removed from the cache.
mf := d.fs.mf
for _, freedFR := range freed {
mf.DecRef(freedFR)
}
return nil
}
// Write implements vfs.FileDescriptionImpl.Write.
func (fd *regularFileFD) Write(ctx context.Context, src usermem.IOSequence, opts vfs.WriteOptions) (int64, error) {
fd.mu.Lock()
n, off, err := fd.pwrite(ctx, src, fd.off, opts)
fd.off = off
fd.mu.Unlock()
return n, err
}
type dentryReadWriter struct {
ctx context.Context
d *dentry
off uint64
direct bool
}
var dentryReadWriterPool = sync.Pool{
New: func() any {
return &dentryReadWriter{}
},
}
func getDentryReadWriter(ctx context.Context, d *dentry, offset int64) *dentryReadWriter {
rw := dentryReadWriterPool.Get().(*dentryReadWriter)
rw.ctx = ctx
rw.d = d
rw.off = uint64(offset)
rw.direct = false
return rw
}
func putDentryReadWriter(rw *dentryReadWriter) {
rw.ctx = nil
rw.d = nil
dentryReadWriterPool.Put(rw)
}
// ReadToBlocks implements safemem.Reader.ReadToBlocks.
func (rw *dentryReadWriter) ReadToBlocks(dsts safemem.BlockSeq) (uint64, error) {
if dsts.IsEmpty() {
return 0, nil
}
// If we have a mmappable host FD (which must be used here to ensure
// coherence with memory-mapped I/O), or if InteropModeShared is in effect
// (which prevents us from caching file contents and makes dentry.size
// unreliable), or if the file was opened O_DIRECT, read directly from
// readHandle() without locking dentry.dataMu.
rw.d.handleMu.RLock()
h := rw.d.readHandle()
if (rw.d.mmapFD.RacyLoad() >= 0 && !rw.d.fs.opts.forcePageCache) || rw.d.fs.opts.interop == InteropModeShared || rw.direct {
n, err := h.readToBlocksAt(rw.ctx, dsts, rw.off)
rw.d.handleMu.RUnlock()
rw.off += n
return n, err
}
// Otherwise read from/through the cache.
memCgID := pgalloc.MemoryCgroupIDFromContext(rw.ctx)
mf := rw.d.fs.mf
fillCache := mf.ShouldCacheEvictable()
var dataMuUnlock func()
if fillCache {
rw.d.dataMu.Lock()
dataMuUnlock = rw.d.dataMu.Unlock
} else {
rw.d.dataMu.RLock()
dataMuUnlock = rw.d.dataMu.RUnlock
}
// Compute the range to read (limited by file size and overflow-checked).
end := rw.d.size.Load()
if rw.off >= end {
dataMuUnlock()
rw.d.handleMu.RUnlock()
return 0, io.EOF
}
if rend := rw.off + dsts.NumBytes(); rend > rw.off && rend < end {
end = rend
}
var done uint64
seg, gap := rw.d.cache.Find(rw.off)
for rw.off < end {
mr := memmap.MappableRange{rw.off, end}
switch {
case seg.Ok():
// Get internal mappings from the cache.
ims, err := mf.MapInternal(seg.FileRangeOf(seg.Range().Intersect(mr)), hostarch.Read)
if err != nil {
dataMuUnlock()
rw.d.handleMu.RUnlock()
return done, err
}
// Copy from internal mappings.
n, err := safemem.CopySeq(dsts, ims)
done += n
rw.off += n
dsts = dsts.DropFirst64(n)
if err != nil {
dataMuUnlock()
rw.d.handleMu.RUnlock()
return done, err
}
// Continue.
seg, gap = seg.NextNonEmpty()
case gap.Ok():
gapMR := gap.Range().Intersect(mr)
if fillCache {
// Read into the cache, then re-enter the loop to read from the
// cache.
gapEnd, _ := hostarch.PageRoundUp(gapMR.End)
reqMR := memmap.MappableRange{
Start: hostarch.PageRoundDown(gapMR.Start),
End: gapEnd,
}
optMR := gap.Range()
_, err := rw.d.cache.Fill(rw.ctx, reqMR, maxFillRange(reqMR, optMR), rw.d.size.Load(), mf, pgalloc.AllocOpts{
Kind: usage.PageCache,
MemCgID: memCgID,
Mode: pgalloc.AllocateAndWritePopulate,
}, h.readToBlocksAt)
mf.MarkEvictable(rw.d, pgalloc.EvictableRange{optMR.Start, optMR.End})
seg, gap = rw.d.cache.Find(rw.off)
if !seg.Ok() {
dataMuUnlock()
rw.d.handleMu.RUnlock()
return done, err
}
// err might have occurred in part of gap.Range() outside gapMR
// (in particular, gap.End() might be beyond EOF). Forget about
// it for now; if the error matters and persists, we'll run
// into it again in a later iteration of this loop.
} else {
// Read directly from the file.
gapDsts := dsts.TakeFirst64(gapMR.Length())
n, err := h.readToBlocksAt(rw.ctx, gapDsts, gapMR.Start)
done += n
rw.off += n
dsts = dsts.DropFirst64(n)
// Partial reads are fine. But we must stop reading.
if n != gapDsts.NumBytes() || err != nil {
dataMuUnlock()
rw.d.handleMu.RUnlock()
return done, err
}
// Continue.
seg, gap = gap.NextSegment(), fsutil.FileRangeGapIterator{}
}
}
}
dataMuUnlock()
rw.d.handleMu.RUnlock()
return done, nil
}
// WriteFromBlocks implements safemem.Writer.WriteFromBlocks.
//
// Preconditions: rw.d.metadataMu must be locked.
func (rw *dentryReadWriter) WriteFromBlocks(srcs safemem.BlockSeq) (uint64, error) {
if srcs.IsEmpty() {
return 0, nil
}
// If we have a mmappable host FD (which must be used here to ensure
// coherence with memory-mapped I/O), or if InteropModeShared is in effect
// (which prevents us from caching file contents), or if the file was
// opened with O_DIRECT, write directly to dentry.writeHandle()
// without locking dentry.dataMu.
rw.d.handleMu.RLock()
h := rw.d.writeHandle()
if (rw.d.mmapFD.RacyLoad() >= 0 && !rw.d.fs.opts.forcePageCache) || rw.d.fs.opts.interop == InteropModeShared || rw.direct {
n, err := h.writeFromBlocksAt(rw.ctx, srcs, rw.off)
rw.off += n
rw.d.dataMu.Lock()
if rw.off > rw.d.size.Load() {
rw.d.size.Store(rw.off)
// The remote file's size will implicitly be extended to the correct
// value when we write back to it.
}
rw.d.dataMu.Unlock()
rw.d.handleMu.RUnlock()
return n, err
}
// Otherwise write to/through the cache.
mf := rw.d.fs.mf
rw.d.dataMu.Lock()
// Compute the range to write (overflow-checked).
start := rw.off
end := rw.off + srcs.NumBytes()
if end <= rw.off {
end = math.MaxInt64
}
var (
done uint64
retErr error
)
seg, gap := rw.d.cache.Find(rw.off)
for rw.off < end {
mr := memmap.MappableRange{rw.off, end}
switch {
case seg.Ok():
// Get internal mappings from the cache.
segMR := seg.Range().Intersect(mr)
ims, err := mf.MapInternal(seg.FileRangeOf(segMR), hostarch.Write)
if err != nil {
retErr = err
goto exitLoop
}
// Copy to internal mappings.
n, err := safemem.CopySeq(ims, srcs)
done += n
rw.off += n
srcs = srcs.DropFirst64(n)
rw.d.dirty.MarkDirty(segMR)
if err != nil {
retErr = err
goto exitLoop
}
// Continue.
seg, gap = seg.NextNonEmpty()
case gap.Ok():
// Write directly to the file. At present, we never fill the cache
// when writing, since doing so can convert small writes into
// inefficient read-modify-write cycles, and we have no mechanism
// for detecting or avoiding this.
gapMR := gap.Range().Intersect(mr)
gapSrcs := srcs.TakeFirst64(gapMR.Length())
n, err := h.writeFromBlocksAt(rw.ctx, gapSrcs, gapMR.Start)
done += n
rw.off += n
srcs = srcs.DropFirst64(n)
// Partial writes are fine. But we must stop writing.
if n != gapSrcs.NumBytes() || err != nil {
retErr = err
goto exitLoop
}
// Continue.
seg, gap = gap.NextSegment(), fsutil.FileRangeGapIterator{}
}
}
exitLoop:
if rw.off > rw.d.size.Load() {
rw.d.size.Store(rw.off)
// The remote file's size will implicitly be extended to the correct
// value when we write back to it.
}
// If InteropModeWritethrough is in effect, flush written data back to the
// remote filesystem.
if rw.d.fs.opts.interop == InteropModeWritethrough && done != 0 {
if err := fsutil.SyncDirty(rw.ctx, memmap.MappableRange{
Start: start,
End: rw.off,
}, &rw.d.cache, &rw.d.dirty, rw.d.size.Load(), mf, h.writeFromBlocksAt); err != nil {
// We have no idea how many bytes were actually flushed.
rw.off = start
done = 0
retErr = err
}
}
rw.d.dataMu.Unlock()
rw.d.handleMu.RUnlock()
return done, retErr
}
func (d *dentry) writeback(ctx context.Context, offset, size int64) error {
if size == 0 {
return nil
}
d.handleMu.RLock()
defer d.handleMu.RUnlock()
h := d.writeHandle()
d.dataMu.Lock()
defer d.dataMu.Unlock()
// Compute the range of valid bytes (overflow-checked).
dentrySize := d.size.Load()
if uint64(offset) >= dentrySize {
return nil
}
end := int64(dentrySize)
if rend := offset + size; rend > offset && rend < end {
end = rend
}
return fsutil.SyncDirty(ctx, memmap.MappableRange{
Start: uint64(offset),
End: uint64(end),
}, &d.cache, &d.dirty, dentrySize, d.fs.mf, h.writeFromBlocksAt)
}
// Seek implements vfs.FileDescriptionImpl.Seek.
func (fd *regularFileFD) Seek(ctx context.Context, offset int64, whence int32) (int64, error) {
fd.mu.Lock()
defer fd.mu.Unlock()
newOffset, err := regularFileSeekLocked(ctx, fd.dentry(), fd.off, offset, whence)
if err != nil {
return 0, err
}
fd.off = newOffset
return newOffset, nil
}
// Calculate the new offset for a seek operation on a regular file.
func regularFileSeekLocked(ctx context.Context, d *dentry, fdOffset, offset int64, whence int32) (int64, error) {
switch whence {
case linux.SEEK_SET:
// Use offset as specified.
case linux.SEEK_CUR:
offset += fdOffset
case linux.SEEK_END, linux.SEEK_DATA, linux.SEEK_HOLE:
// Ensure file size is up to date.
if !d.cachedMetadataAuthoritative() {
if err := d.updateMetadata(ctx); err != nil {
return 0, err
}
}
size := int64(d.size.Load())
// For SEEK_DATA and SEEK_HOLE, treat the file as a single contiguous
// block of data.
switch whence {
case linux.SEEK_END:
offset += size
case linux.SEEK_DATA:
if offset >= size {
return 0, linuxerr.ENXIO
}
// Use offset as specified.
case linux.SEEK_HOLE:
if offset >= size {
return 0, linuxerr.ENXIO
}
offset = size
}
default:
return 0, linuxerr.EINVAL
}
if offset < 0 {
return 0, linuxerr.EINVAL
}
return offset, nil
}
// Sync implements vfs.FileDescriptionImpl.Sync.
func (fd *regularFileFD) Sync(ctx context.Context) error {
return fd.dentry().syncCachedFile(ctx, false /* forFilesystemSync */)
}
// ConfigureMMap implements vfs.FileDescriptionImpl.ConfigureMMap.
func (fd *regularFileFD) ConfigureMMap(ctx context.Context, opts *memmap.MMapOpts) error {
d := fd.dentry()
// Force sentry page caching at your own risk.
if !d.fs.opts.forcePageCache {
switch d.fs.opts.interop {
case InteropModeExclusive:
// Any mapping is fine.
case InteropModeWritethrough:
// Shared writable mappings require a host FD, since otherwise we
// can't synchronously flush memory-mapped writes to the remote
// file.
if opts.Private || !opts.MaxPerms.Write {
break
}
fallthrough
case InteropModeShared:
// All mappings require a host FD to be coherent with other
// filesystem users.
if d.mmapFD.Load() < 0 {
return linuxerr.ENODEV
}
default:
panic(fmt.Sprintf("unknown InteropMode %v", d.fs.opts.interop))
}
}
// After this point, d may be used as a memmap.Mappable.
d.pf.hostFileMapperInitOnce.Do(d.pf.hostFileMapper.Init)
opts.SentryOwnedContent = d.fs.opts.forcePageCache
return vfs.GenericConfigureMMap(&fd.vfsfd, d, opts)
}
func (fs *filesystem) mayCachePagesInMemoryFile() bool {
return fs.opts.forcePageCache || fs.opts.interop != InteropModeShared
}
// AddMapping implements memmap.Mappable.AddMapping.
func (d *dentry) AddMapping(ctx context.Context, ms memmap.MappingSpace, ar hostarch.AddrRange, offset uint64, writable bool) error {
d.mapsMu.Lock()
mapped := d.mappings.AddMapping(ms, ar, offset, writable)
// Do this unconditionally since whether we have a host FD can change
// across save/restore.
for _, r := range mapped {
d.pf.hostFileMapper.IncRefOn(r)
}
if d.fs.mayCachePagesInMemoryFile() {
// d.Evict() will refuse to evict memory-mapped pages, so tell the
// MemoryFile to not bother trying.
mf := d.fs.mf
for _, r := range mapped {
mf.MarkUnevictable(d, pgalloc.EvictableRange{r.Start, r.End})
}
}
d.mapsMu.Unlock()
return nil
}
// RemoveMapping implements memmap.Mappable.RemoveMapping.
func (d *dentry) RemoveMapping(ctx context.Context, ms memmap.MappingSpace, ar hostarch.AddrRange, offset uint64, writable bool) {
d.mapsMu.Lock()
unmapped := d.mappings.RemoveMapping(ms, ar, offset, writable)
for _, r := range unmapped {
d.pf.hostFileMapper.DecRefOn(r)
}
if d.fs.mayCachePagesInMemoryFile() {
// Pages that are no longer referenced by any application memory
// mappings are now considered unused; allow MemoryFile to evict them
// when necessary.
mf := d.fs.mf
d.dataMu.Lock()
for _, r := range unmapped {
// Since these pages are no longer mapped, they are no longer
// concurrently dirtyable by a writable memory mapping.
d.dirty.AllowClean(r)
mf.MarkEvictable(d, pgalloc.EvictableRange{r.Start, r.End})
}
d.dataMu.Unlock()
}
d.mapsMu.Unlock()
}
// CopyMapping implements memmap.Mappable.CopyMapping.
func (d *dentry) CopyMapping(ctx context.Context, ms memmap.MappingSpace, srcAR, dstAR hostarch.AddrRange, offset uint64, writable bool) error {
return d.AddMapping(ctx, ms, dstAR, offset, writable)
}
// Translate implements memmap.Mappable.Translate.
func (d *dentry) Translate(ctx context.Context, required, optional memmap.MappableRange, at hostarch.AccessType) ([]memmap.Translation, error) {
d.handleMu.RLock()
if d.mmapFD.RacyLoad() >= 0 && !d.fs.opts.forcePageCache {
d.handleMu.RUnlock()
mr := optional
if d.fs.opts.limitHostFDTranslation {
mr = maxFillRange(required, optional)
}
return []memmap.Translation{
{
Source: mr,
File: &d.pf,
Offset: mr.Start,
Perms: hostarch.AnyAccess,
},
}, nil
}
memCgID := pgalloc.MemoryCgroupIDFromContext(ctx)
d.dataMu.Lock()
// Constrain translations to d.size (rounded up) to prevent translation to
// pages that may be concurrently truncated.
pgend, _ := hostarch.PageRoundUp(d.size.Load())
var beyondEOF bool
if required.End > pgend {
if required.Start >= pgend {
d.dataMu.Unlock()
d.handleMu.RUnlock()
return nil, &memmap.BusError{io.EOF}
}
beyondEOF = true
required.End = pgend
}
if optional.End > pgend {
optional.End = pgend
}
mf := d.fs.mf
h := d.readHandle()
_, cerr := d.cache.Fill(ctx, required, maxFillRange(required, optional), d.size.Load(), mf, pgalloc.AllocOpts{
Kind: usage.PageCache,
MemCgID: memCgID,
Mode: pgalloc.AllocateAndWritePopulate,
}, h.readToBlocksAt)
var ts []memmap.Translation
var translatedEnd uint64
for seg := d.cache.FindSegment(required.Start); seg.Ok() && seg.Start() < required.End; seg, _ = seg.NextNonEmpty() {
segMR := seg.Range().Intersect(optional)
// TODO(jamieliu): Make Translations writable even if writability is
// not required if already kept-dirty by another writable translation.
perms := hostarch.AccessType{
Read: true,
Execute: true,
}
if at.Write {
// From this point forward, this memory can be dirtied through the
// mapping at any time.
d.dirty.KeepDirty(segMR)
perms.Write = true
}
ts = append(ts, memmap.Translation{
Source: segMR,
File: mf,
Offset: seg.FileRangeOf(segMR).Start,
Perms: perms,
})
translatedEnd = segMR.End
}
d.dataMu.Unlock()
d.handleMu.RUnlock()
// Don't return the error returned by c.cache.Fill if it occurred outside
// of required.
if translatedEnd < required.End && cerr != nil {
return ts, &memmap.BusError{cerr}
}
if beyondEOF {
return ts, &memmap.BusError{io.EOF}
}
return ts, nil
}
func maxFillRange(required, optional memmap.MappableRange) memmap.MappableRange {
const maxReadahead = 64 << 10 // 64 KB, chosen arbitrarily
if required.Length() >= maxReadahead {
return required
}
if optional.Length() <= maxReadahead {
return optional
}
optional.Start = required.Start
if optional.Length() <= maxReadahead {
return optional
}
optional.End = optional.Start + maxReadahead
return optional
}
// InvalidateUnsavable implements memmap.Mappable.InvalidateUnsavable.
func (d *dentry) InvalidateUnsavable(ctx context.Context) error {
// Whether we have a host fd (and consequently what memmap.File is
// mapped) can change across save/restore, so invalidate all translations
// unconditionally.
d.mapsMu.Lock()
defer d.mapsMu.Unlock()
d.mappings.InvalidateAll(memmap.InvalidateOpts{})
// Write the cache's contents back to the remote file so that if we have a
// host fd after restore, the remote file's contents are coherent.
mf := d.fs.mf
d.handleMu.RLock()
defer d.handleMu.RUnlock()
h := d.writeHandle()
d.dataMu.Lock()
defer d.dataMu.Unlock()
if err := fsutil.SyncDirtyAll(ctx, &d.cache, &d.dirty, d.size.Load(), mf, h.writeFromBlocksAt); err != nil {
return err
}
// Discard the cache so that it's not stored in saved state. This is safe
// because per InvalidateUnsavable invariants, no new translations can have
// been returned after we invalidated all existing translations above.
d.cache.DropAll(mf)
d.dirty.RemoveAll()
return nil
}
// Evict implements pgalloc.EvictableMemoryUser.Evict.
func (d *dentry) Evict(ctx context.Context, er pgalloc.EvictableRange) {
mr := memmap.MappableRange{er.Start, er.End}
mf := d.fs.mf
d.mapsMu.Lock()
defer d.mapsMu.Unlock()
d.handleMu.RLock()
defer d.handleMu.RUnlock()
h := d.writeHandle()
d.dataMu.Lock()
defer d.dataMu.Unlock()
// Only allow pages that are no longer memory-mapped to be evicted.
for mgap := d.mappings.LowerBoundGap(mr.Start); mgap.Ok() && mgap.Start() < mr.End; mgap = mgap.NextGap() {
mgapMR := mgap.Range().Intersect(mr)
if mgapMR.Length() == 0 {
continue
}
if err := fsutil.SyncDirty(ctx, mgapMR, &d.cache, &d.dirty, d.size.Load(), mf, h.writeFromBlocksAt); err != nil {
log.Warningf("Failed to writeback cached data %v: %v", mgapMR, err)
}
d.cache.Drop(mgapMR, mf)
d.dirty.KeepClean(mgapMR)
}
}
// dentryPlatformFile implements memmap.File. It exists solely because dentry
// cannot implement both vfs.DentryImpl.IncRef and memmap.File.IncRef.
//
// dentryPlatformFile is only used when a host FD representing the remote file
// is available (i.e. dentry.mmapFD >= 0), and that FD is used for application
// memory mappings (i.e. !filesystem.opts.forcePageCache).
//
// +stateify savable
type dentryPlatformFile struct {
memmap.NoBufferedIOFallback
*dentry
// fdRefs counts references on memmap.File offsets. fdRefs is protected
// by dentry.dataMu.
fdRefs fsutil.FrameRefSet
// If this dentry represents a regular file, and dentry.mmapFD >= 0,
// hostFileMapper caches mappings of dentry.mmapFD.
hostFileMapper fsutil.HostFileMapper
// hostFileMapperInitOnce is used to lazily initialize hostFileMapper.
hostFileMapperInitOnce sync.Once `state:"nosave"`
}
// IncRef implements memmap.File.IncRef.
func (d *dentryPlatformFile) IncRef(fr memmap.FileRange, memCgID uint32) {
d.dataMu.Lock()
d.fdRefs.IncRefAndAccount(fr, memCgID)
d.dataMu.Unlock()
}
// DecRef implements memmap.File.DecRef.
func (d *dentryPlatformFile) DecRef(fr memmap.FileRange) {
d.dataMu.Lock()
d.fdRefs.DecRefAndAccount(fr)
d.dataMu.Unlock()
}
// MapInternal implements memmap.File.MapInternal.
func (d *dentryPlatformFile) MapInternal(fr memmap.FileRange, at hostarch.AccessType) (safemem.BlockSeq, error) {
d.handleMu.RLock()
defer d.handleMu.RUnlock()
return d.hostFileMapper.MapInternal(fr, int(d.mmapFD.RacyLoad()), at.Write)
}
// FD implements memmap.File.FD.
func (d *dentryPlatformFile) FD() int {
d.handleMu.RLock()
defer d.handleMu.RUnlock()
return int(d.mmapFD.RacyLoad())
}
|