1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tmpfs
import (
"fmt"
"io"
"math"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/safemem"
"gvisor.dev/gvisor/pkg/sentry/fsmetric"
"gvisor.dev/gvisor/pkg/sentry/fsutil"
"gvisor.dev/gvisor/pkg/sentry/hostfd"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/sentry/vfs"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/usermem"
)
// regularFile is a regular (=S_IFREG) tmpfs file.
//
// +stateify savable
type regularFile struct {
inode inode
// memoryUsageKind is the memory accounting category under which pages backing
// this regularFile's contents are accounted.
memoryUsageKind usage.MemoryKind
// mapsMu protects mappings.
mapsMu sync.Mutex `state:"nosave"`
// mappings tracks mappings of the file into memmap.MappingSpaces.
//
// Protected by mapsMu.
mappings memmap.MappingSet
// writableMappingPages tracks how many pages of virtual memory are mapped
// as potentially writable from this file. If a page has multiple mappings,
// each mapping is counted separately.
//
// This counter is susceptible to overflow as we can potentially count
// mappings from many VMAs. We count pages rather than bytes to slightly
// mitigate this.
//
// Protected by mapsMu.
writableMappingPages uint64
// dataMu protects the fields below.
dataMu sync.RWMutex `state:"nosave"`
// data maps offsets into the file to offsets into memFile that store
// the file's data.
//
// Protected by dataMu.
data fsutil.FileRangeSet
// seals represents file seals on this inode.
//
// Protected by dataMu.
seals uint32
// size is the size of data.
//
// Protected by both dataMu and inode.mu; reading it requires holding
// either mutex, while writing requires holding both AND using atomics.
// Readers that do not require consistency (like Stat) may read the
// value atomically without holding either lock.
size atomicbitops.Uint64
}
func (fs *filesystem) newRegularFile(kuid auth.KUID, kgid auth.KGID, mode linux.FileMode, parentDir *directory) *inode {
file := ®ularFile{
memoryUsageKind: fs.usage,
seals: linux.F_SEAL_SEAL,
}
file.inode.init(file, fs, kuid, kgid, linux.S_IFREG|mode, parentDir)
file.inode.nlink = atomicbitops.FromUint32(1) // from parent directory
return &file.inode
}
// newUnlinkedRegularFileDescription creates a regular file on the tmpfs
// filesystem represented by mount and returns an FD representing that file.
// The new file is not reachable by path traversal from any other file.
//
// newUnlinkedRegularFileDescription is analogous to Linux's
// mm/shmem.c:__shmem_file_setup().
//
// Preconditions: mount must be a tmpfs mount.
func newUnlinkedRegularFileDescription(ctx context.Context, creds *auth.Credentials, mount *vfs.Mount, name string) (*regularFileFD, error) {
fs, ok := mount.Filesystem().Impl().(*filesystem)
if !ok {
panic("tmpfs.newUnlinkedRegularFileDescription() called with non-tmpfs mount")
}
inode := fs.newRegularFile(creds.EffectiveKUID, creds.EffectiveKGID, 0777, nil /* parentDir */)
d := fs.newDentry(inode)
defer d.DecRef(ctx)
d.name = name
fd := ®ularFileFD{}
fd.Init(&inode.locks)
flags := uint32(linux.O_RDWR)
if err := fd.vfsfd.Init(fd, flags, mount, &d.vfsd, &vfs.FileDescriptionOptions{}); err != nil {
return nil, err
}
return fd, nil
}
// NewZeroFile creates a new regular file and file description as for
// mmap(MAP_SHARED | MAP_ANONYMOUS). The file has the given size and is
// initially (implicitly) filled with zeroes.
//
// Preconditions: mount must be a tmpfs mount.
func NewZeroFile(ctx context.Context, creds *auth.Credentials, mount *vfs.Mount, size uint64) (*vfs.FileDescription, error) {
// Compare mm/shmem.c:shmem_zero_setup().
fd, err := newUnlinkedRegularFileDescription(ctx, creds, mount, "dev/zero")
if err != nil {
return nil, err
}
rf := fd.inode().impl.(*regularFile)
rf.memoryUsageKind = usage.Anonymous
rf.size.Store(size)
return &fd.vfsfd, err
}
// NewMemfd creates a new regular file and file description as for
// memfd_create.
//
// Preconditions: mount must be a tmpfs mount.
func NewMemfd(ctx context.Context, creds *auth.Credentials, mount *vfs.Mount, allowSeals bool, name string) (*vfs.FileDescription, error) {
fd, err := newUnlinkedRegularFileDescription(ctx, creds, mount, name)
if err != nil {
return nil, err
}
if allowSeals {
fd.inode().impl.(*regularFile).seals = 0
}
return &fd.vfsfd, nil
}
// truncate grows or shrinks the file to the given size. It returns true if the
// file size was updated.
func (rf *regularFile) truncate(newSize uint64) (bool, error) {
rf.inode.mu.Lock()
defer rf.inode.mu.Unlock()
return rf.truncateLocked(newSize)
}
// Preconditions:
// - rf.inode.mu must be held.
// - rf.dataMu must be locked for writing.
// - newSize > rf.size.
func (rf *regularFile) growLocked(newSize uint64) error {
// Can we grow the file?
if rf.seals&linux.F_SEAL_GROW != 0 {
return linuxerr.EPERM
}
rf.size.Store(newSize)
return nil
}
// Preconditions: rf.inode.mu must be held.
func (rf *regularFile) truncateLocked(newSize uint64) (bool, error) {
oldSize := rf.size.RacyLoad()
if newSize == oldSize {
// Nothing to do.
return false, nil
}
// Need to hold inode.mu and dataMu while modifying size.
rf.dataMu.Lock()
if newSize > oldSize {
err := rf.growLocked(newSize)
rf.dataMu.Unlock()
return err == nil, err
}
// We are shrinking the file. First check if this is allowed.
if rf.seals&linux.F_SEAL_SHRINK != 0 {
rf.dataMu.Unlock()
return false, linuxerr.EPERM
}
rf.size.Store(newSize)
rf.dataMu.Unlock()
// Invalidate past translations of truncated pages.
oldpgend := offsetPageEnd(int64(oldSize))
newpgend := offsetPageEnd(int64(newSize))
if newpgend < oldpgend {
rf.mapsMu.Lock()
rf.mappings.Invalidate(memmap.MappableRange{newpgend, oldpgend}, memmap.InvalidateOpts{
// Compare Linux's mm/shmem.c:shmem_setattr() =>
// mm/memory.c:unmap_mapping_range(evencows=1).
InvalidatePrivate: true,
})
rf.mapsMu.Unlock()
}
// We are now guaranteed that there are no translations of truncated pages,
// and can remove them.
rf.dataMu.Lock()
decPages := rf.data.Truncate(newSize, rf.inode.fs.mf)
rf.dataMu.Unlock()
rf.inode.fs.unaccountPages(decPages)
return true, nil
}
// AddMapping implements memmap.Mappable.AddMapping.
func (rf *regularFile) AddMapping(ctx context.Context, ms memmap.MappingSpace, ar hostarch.AddrRange, offset uint64, writable bool) error {
rf.mapsMu.Lock()
defer rf.mapsMu.Unlock()
rf.dataMu.RLock()
defer rf.dataMu.RUnlock()
// Reject writable mapping if F_SEAL_WRITE is set.
if rf.seals&linux.F_SEAL_WRITE != 0 && writable {
return linuxerr.EPERM
}
rf.mappings.AddMapping(ms, ar, offset, writable)
if writable {
pagesBefore := rf.writableMappingPages
// ar is guaranteed to be page aligned per memmap.Mappable.
rf.writableMappingPages += uint64(ar.Length() / hostarch.PageSize)
if rf.writableMappingPages < pagesBefore {
panic(fmt.Sprintf("Overflow while mapping potentially writable pages pointing to a tmpfs file. Before %v, after %v", pagesBefore, rf.writableMappingPages))
}
}
return nil
}
// RemoveMapping implements memmap.Mappable.RemoveMapping.
func (rf *regularFile) RemoveMapping(ctx context.Context, ms memmap.MappingSpace, ar hostarch.AddrRange, offset uint64, writable bool) {
rf.mapsMu.Lock()
defer rf.mapsMu.Unlock()
rf.mappings.RemoveMapping(ms, ar, offset, writable)
if writable {
pagesBefore := rf.writableMappingPages
// ar is guaranteed to be page aligned per memmap.Mappable.
rf.writableMappingPages -= uint64(ar.Length() / hostarch.PageSize)
if rf.writableMappingPages > pagesBefore {
panic(fmt.Sprintf("Underflow while unmapping potentially writable pages pointing to a tmpfs file. Before %v, after %v", pagesBefore, rf.writableMappingPages))
}
}
}
// CopyMapping implements memmap.Mappable.CopyMapping.
func (rf *regularFile) CopyMapping(ctx context.Context, ms memmap.MappingSpace, srcAR, dstAR hostarch.AddrRange, offset uint64, writable bool) error {
return rf.AddMapping(ctx, ms, dstAR, offset, writable)
}
// Translate implements memmap.Mappable.Translate.
func (rf *regularFile) Translate(ctx context.Context, required, optional memmap.MappableRange, at hostarch.AccessType) ([]memmap.Translation, error) {
memCgID := pgalloc.MemoryCgroupIDFromContext(ctx)
rf.dataMu.Lock()
defer rf.dataMu.Unlock()
// Constrain translations to f.attr.Size (rounded up) to prevent
// translation to pages that may be concurrently truncated.
pgend := offsetPageEnd(int64(rf.size.RacyLoad()))
var beyondEOF bool
if required.End > pgend {
if required.Start >= pgend {
return nil, &memmap.BusError{io.EOF}
}
beyondEOF = true
required.End = pgend
}
if optional.End > pgend {
optional.End = pgend
}
pagesToFill := rf.data.PagesToFill(required, optional)
if !rf.inode.fs.accountPages(pagesToFill) {
// If we can not accommodate pagesToFill pages, then retry with just
// the required range. Because optional may be larger than required.
// Only error out if even the required range can not be allocated for.
pagesToFill = rf.data.PagesToFill(required, required)
if !rf.inode.fs.accountPages(pagesToFill) {
return nil, &memmap.BusError{linuxerr.ENOSPC}
}
optional = required
}
pagesAlloced, cerr := rf.data.Fill(ctx, required, optional, rf.size.RacyLoad(), rf.inode.fs.mf, pgalloc.AllocOpts{
Kind: rf.memoryUsageKind,
MemCgID: memCgID,
}, nil)
// rf.data.Fill() may fail mid-way. We still want to account any pages that
// were allocated, irrespective of an error.
rf.inode.fs.adjustPageAcct(pagesToFill, pagesAlloced)
var ts []memmap.Translation
var translatedEnd uint64
for seg := rf.data.FindSegment(required.Start); seg.Ok() && seg.Start() < required.End; seg, _ = seg.NextNonEmpty() {
segMR := seg.Range().Intersect(optional)
ts = append(ts, memmap.Translation{
Source: segMR,
File: rf.inode.fs.mf,
Offset: seg.FileRangeOf(segMR).Start,
Perms: hostarch.AnyAccess,
})
translatedEnd = segMR.End
}
// Don't return the error returned by f.data.Fill if it occurred outside of
// required.
if translatedEnd < required.End && cerr != nil {
return ts, &memmap.BusError{cerr}
}
if beyondEOF {
return ts, &memmap.BusError{io.EOF}
}
return ts, nil
}
// InvalidateUnsavable implements memmap.Mappable.InvalidateUnsavable.
func (*regularFile) InvalidateUnsavable(context.Context) error {
return nil
}
// +stateify savable
type regularFileFD struct {
fileDescription
// off is the file offset. off is accessed using atomic memory operations.
// offMu serializes operations that may mutate off.
off int64
offMu sync.Mutex `state:"nosave"`
}
// Release implements vfs.FileDescriptionImpl.Release.
func (fd *regularFileFD) Release(context.Context) {
// noop
}
// Allocate implements vfs.FileDescriptionImpl.Allocate.
func (fd *regularFileFD) Allocate(ctx context.Context, mode, offset, length uint64) error {
f := fd.inode().impl.(*regularFile)
memCgID := pgalloc.MemoryCgroupIDFromContext(ctx)
// To be consistent with Linux, inode.mu must be locked throughout.
f.inode.mu.Lock()
defer f.inode.mu.Unlock()
end := offset + length
pgEnd, ok := hostarch.PageRoundUp(end)
if !ok {
return linuxerr.EFBIG
}
// Allocate in chunks for the following reasons:
// 1. Size limit may permit really large fallocate, which can take a long
// time to execute on the host. This can cause watchdog to timeout and
// crash the system. Watchdog needs petting.
// 2. Linux allocates folios iteratively while checking for interrupts. In
// gVisor, we need to manually check for interrupts between chunks.
const chunkSize = 4 << 30 // 4 GiB
for curPgStart := hostarch.PageRoundDown(offset); curPgStart < pgEnd; {
curPgEnd := pgEnd
newSize := end
if curPgEnd-curPgStart > chunkSize {
curPgEnd = curPgStart + chunkSize
newSize = curPgEnd
}
required := memmap.MappableRange{Start: curPgStart, End: curPgEnd}
if err := f.allocateLocked(ctx, mode, newSize, required, memCgID); err != nil {
return err
}
// This loop can take a long time to process, so periodically check for
// interrupts. This also pets the watchdog.
if ctx.Interrupted() {
return linuxerr.EINTR
}
// Advance curPgStart.
curPgStart = curPgEnd
}
return nil
}
// Preconditions:
// - rf.inode.mu is locked.
// - required must be page-aligned.
// - required.Start < newSize <= required.End.
func (rf *regularFile) allocateLocked(ctx context.Context, mode, newSize uint64, required memmap.MappableRange, memCgID uint32) error {
rf.dataMu.Lock()
defer rf.dataMu.Unlock()
// We must allocate pages in the range specified by offset and length.
// Even if newSize <= oldSize, there might not be actual memory backing this
// range, so any gaps must be filled by calling f.data.Fill().
// "After a successful call, subsequent writes into the range
// specified by offset and len are guaranteed not to fail because of
// lack of disk space." - fallocate(2)
pagesToFill := rf.data.PagesToFill(required, required)
if !rf.inode.fs.accountPages(pagesToFill) {
return linuxerr.ENOSPC
}
// Given our definitions in pgalloc, fallocate(2) semantics imply that pages
// in the MemoryFile must be committed, in addition to being allocated.
allocMode := pgalloc.AllocateAndCommit
if !rf.inode.fs.mf.IsDiskBacked() {
// Upgrade to AllocateAndWritePopulate for memory(shmem)-backed files. We
// take a more aggressive approach in populating pages for memory-backed
// MemoryFiles. shmem pages are subject to swap rather than disk writeback.
// They are not likely to be swapped before they are written to. Hence it
// is beneficial to populate (in addition to commit) shmem pages to avoid
// faulting page-by-page when these pages are written to in the future.
allocMode = pgalloc.AllocateAndWritePopulate
}
pagesAlloced, err := rf.data.Fill(ctx, required, required, newSize, rf.inode.fs.mf, pgalloc.AllocOpts{
Kind: rf.memoryUsageKind,
MemCgID: memCgID,
Mode: allocMode,
}, nil /* r */)
// f.data.Fill() may fail mid-way. We still want to account any pages that
// were allocated, irrespective of an error.
rf.inode.fs.adjustPageAcct(pagesToFill, pagesAlloced)
if err != nil && err != io.EOF {
return err
}
oldSize := rf.size.Load()
if oldSize >= newSize {
return nil
}
return rf.growLocked(newSize)
}
// PRead implements vfs.FileDescriptionImpl.PRead.
func (fd *regularFileFD) PRead(ctx context.Context, dst usermem.IOSequence, offset int64, opts vfs.ReadOptions) (int64, error) {
start := fsmetric.StartReadWait()
defer fsmetric.FinishReadWait(fsmetric.TmpfsReadWait, start)
fsmetric.TmpfsReads.Increment()
if offset < 0 {
return 0, linuxerr.EINVAL
}
// Check that flags are supported. RWF_DSYNC/RWF_SYNC can be ignored since
// all state is in-memory.
//
// TODO(gvisor.dev/issue/2601): Support select preadv2 flags.
if opts.Flags&^(linux.RWF_HIPRI|linux.RWF_DSYNC|linux.RWF_SYNC) != 0 {
return 0, linuxerr.EOPNOTSUPP
}
if dst.NumBytes() == 0 {
return 0, nil
}
f := fd.inode().impl.(*regularFile)
// memCgID can be 0 here because regularFileReadWriter.ReadToBlocks() never
// allocates from pgalloc.
rw := getRegularFileReadWriter(f, offset, 0)
n, err := dst.CopyOutFrom(ctx, rw)
putRegularFileReadWriter(rw)
fd.inode().touchAtime(fd.vfsfd.Mount())
return n, err
}
// Read implements vfs.FileDescriptionImpl.Read.
func (fd *regularFileFD) Read(ctx context.Context, dst usermem.IOSequence, opts vfs.ReadOptions) (int64, error) {
fd.offMu.Lock()
n, err := fd.PRead(ctx, dst, fd.off, opts)
fd.off += n
fd.offMu.Unlock()
return n, err
}
// PWrite implements vfs.FileDescriptionImpl.PWrite.
func (fd *regularFileFD) PWrite(ctx context.Context, src usermem.IOSequence, offset int64, opts vfs.WriteOptions) (int64, error) {
n, _, err := fd.pwrite(ctx, src, offset, opts)
return n, err
}
// pwrite returns the number of bytes written, final offset and error. The
// final offset should be ignored by PWrite.
func (fd *regularFileFD) pwrite(ctx context.Context, src usermem.IOSequence, offset int64, opts vfs.WriteOptions) (written, finalOff int64, err error) {
if offset < 0 {
return 0, offset, linuxerr.EINVAL
}
// Check that flags are supported. RWF_DSYNC/RWF_SYNC can be ignored since
// all state is in-memory.
//
// TODO(gvisor.dev/issue/2601): Support select preadv2 flags.
if opts.Flags&^(linux.RWF_HIPRI|linux.RWF_DSYNC|linux.RWF_SYNC) != 0 {
return 0, offset, linuxerr.EOPNOTSUPP
}
srclen := src.NumBytes()
if srclen == 0 {
return 0, offset, nil
}
f := fd.inode().impl.(*regularFile)
f.inode.mu.Lock()
defer f.inode.mu.Unlock()
// If the file is opened with O_APPEND, update offset to file size.
if fd.vfsfd.StatusFlags()&linux.O_APPEND != 0 {
// Locking f.inode.mu is sufficient for reading f.size.
offset = int64(f.size.RacyLoad())
}
end := offset + srclen
if end < offset {
// Overflow.
return 0, offset, linuxerr.EINVAL
}
srclen, err = vfs.CheckLimit(ctx, offset, srclen)
if err != nil {
return 0, offset, err
}
src = src.TakeFirst64(srclen)
// Perform the write.
rw := getRegularFileReadWriter(f, offset, pgalloc.MemoryCgroupIDFromContext(ctx))
n, err := src.CopyInTo(ctx, rw)
f.inode.touchCMtimeLocked()
for {
old := f.inode.mode.Load()
new := vfs.ClearSUIDAndSGID(old)
if swapped := f.inode.mode.CompareAndSwap(old, new); swapped {
break
}
}
putRegularFileReadWriter(rw)
return n, n + offset, err
}
// Write implements vfs.FileDescriptionImpl.Write.
func (fd *regularFileFD) Write(ctx context.Context, src usermem.IOSequence, opts vfs.WriteOptions) (int64, error) {
fd.offMu.Lock()
n, off, err := fd.pwrite(ctx, src, fd.off, opts)
fd.off = off
fd.offMu.Unlock()
return n, err
}
// Seek implements vfs.FileDescriptionImpl.Seek.
func (fd *regularFileFD) Seek(ctx context.Context, offset int64, whence int32) (int64, error) {
fd.offMu.Lock()
defer fd.offMu.Unlock()
switch whence {
case linux.SEEK_SET:
// use offset as specified
case linux.SEEK_CUR:
offset += fd.off
case linux.SEEK_END:
offset += int64(fd.inode().impl.(*regularFile).size.Load())
default:
return 0, linuxerr.EINVAL
}
if offset < 0 {
return 0, linuxerr.EINVAL
}
fd.off = offset
return offset, nil
}
// ConfigureMMap implements vfs.FileDescriptionImpl.ConfigureMMap.
func (fd *regularFileFD) ConfigureMMap(ctx context.Context, opts *memmap.MMapOpts) error {
file := fd.inode().impl.(*regularFile)
opts.SentryOwnedContent = true
return vfs.GenericConfigureMMap(&fd.vfsfd, file, opts)
}
// offsetPageEnd returns the file offset rounded up to the nearest
// page boundary. offsetPageEnd panics if rounding up causes overflow,
// which shouldn't be possible given that offset is an int64.
func offsetPageEnd(offset int64) uint64 {
end, ok := hostarch.Addr(offset).RoundUp()
if !ok {
panic("impossible overflow")
}
return uint64(end)
}
// regularFileReadWriter implements safemem.Reader and Safemem.Writer.
type regularFileReadWriter struct {
file *regularFile
// Offset into the file to read/write at. Note that this may be
// different from the FD offset if PRead/PWrite is used.
off uint64
// memCgID is the memory cgroup ID used for accounting the allocated
// pages.
memCgID uint32
}
var regularFileReadWriterPool = sync.Pool{
New: func() any {
return ®ularFileReadWriter{}
},
}
func getRegularFileReadWriter(file *regularFile, offset int64, memCgID uint32) *regularFileReadWriter {
rw := regularFileReadWriterPool.Get().(*regularFileReadWriter)
rw.file = file
rw.off = uint64(offset)
rw.memCgID = memCgID
return rw
}
func putRegularFileReadWriter(rw *regularFileReadWriter) {
rw.file = nil
regularFileReadWriterPool.Put(rw)
}
// ReadToBlocks implements safemem.Reader.ReadToBlocks.
func (rw *regularFileReadWriter) ReadToBlocks(dsts safemem.BlockSeq) (uint64, error) {
rw.file.dataMu.RLock()
defer rw.file.dataMu.RUnlock()
size := rw.file.size.RacyLoad()
// Compute the range to read (limited by file size and overflow-checked).
if rw.off >= size {
return 0, io.EOF
}
end := size
if rend := rw.off + dsts.NumBytes(); rend > rw.off && rend < end {
end = rend
}
var done uint64
seg, gap := rw.file.data.Find(uint64(rw.off))
for rw.off < end {
mr := memmap.MappableRange{uint64(rw.off), uint64(end)}
switch {
case seg.Ok():
// Get internal mappings.
ims, err := rw.file.inode.fs.mf.MapInternal(seg.FileRangeOf(seg.Range().Intersect(mr)), hostarch.Read)
if err != nil {
return done, err
}
// Copy from internal mappings.
n, err := safemem.CopySeq(dsts, ims)
done += n
rw.off += uint64(n)
dsts = dsts.DropFirst64(n)
if err != nil {
return done, err
}
// Continue.
seg, gap = seg.NextNonEmpty()
case gap.Ok():
// Tmpfs holes are zero-filled.
gapmr := gap.Range().Intersect(mr)
dst := dsts.TakeFirst64(gapmr.Length())
n, err := safemem.ZeroSeq(dst)
done += n
rw.off += uint64(n)
dsts = dsts.DropFirst64(n)
if err != nil {
return done, err
}
// Continue.
seg, gap = gap.NextSegment(), fsutil.FileRangeGapIterator{}
}
}
return done, nil
}
// WriteFromBlocks implements safemem.Writer.WriteFromBlocks.
//
// Preconditions: rw.file.inode.mu must be held.
func (rw *regularFileReadWriter) WriteFromBlocks(srcs safemem.BlockSeq) (uint64, error) {
// Hold dataMu so we can modify size.
rw.file.dataMu.Lock()
defer rw.file.dataMu.Unlock()
// Compute the range to write (overflow-checked).
end := rw.off + srcs.NumBytes()
if end <= rw.off {
end = math.MaxInt64
}
// Check if seals prevent either file growth or all writes.
switch {
case rw.file.seals&linux.F_SEAL_WRITE != 0: // Write sealed
return 0, linuxerr.EPERM
case end > rw.file.size.RacyLoad() && rw.file.seals&linux.F_SEAL_GROW != 0: // Grow sealed
// When growth is sealed, Linux effectively allows writes which would
// normally grow the file to partially succeed up to the current EOF,
// rounded down to the page boundary before the EOF.
//
// This happens because writes (and thus the growth check) for tmpfs
// files proceed page-by-page on Linux, and the final write to the page
// containing EOF fails, resulting in a partial write up to the start of
// that page.
//
// To emulate this behaviour, artificially truncate the write to the
// start of the page containing the current EOF.
//
// See Linux, mm/filemap.c:generic_perform_write() and
// mm/shmem.c:shmem_write_begin().
if pgstart := uint64(hostarch.Addr(rw.file.size.RacyLoad()).RoundDown()); end > pgstart {
end = pgstart
}
if end <= rw.off {
// Truncation would result in no data being written.
return 0, linuxerr.EPERM
}
}
// Page-aligned mr for when we need to allocate memory. RoundUp can't
// overflow since end is an int64.
pgstartaddr := hostarch.Addr(rw.off).RoundDown()
pgendaddr, _ := hostarch.Addr(end).RoundUp()
pgMR := memmap.MappableRange{uint64(pgstartaddr), uint64(pgendaddr)}
var (
done uint64
retErr error
)
seg, gap := rw.file.data.Find(uint64(rw.off))
for rw.off < end {
mr := memmap.MappableRange{uint64(rw.off), uint64(end)}
switch {
case seg.Ok():
n, err := rw.writeToMF(seg.FileRangeOf(seg.Range().Intersect(mr)), srcs)
done += n
rw.off += uint64(n)
srcs = srcs.DropFirst64(n)
if err != nil {
retErr = err
goto exitLoop
}
// Continue.
seg, gap = seg.NextNonEmpty()
case gap.Ok():
// Allocate memory for the write.
gapMR := gap.Range().Intersect(pgMR)
pagesToFill := gapMR.Length() / hostarch.PageSize
pagesReserved := rw.file.inode.fs.accountPagesPartial(pagesToFill)
if pagesReserved == 0 {
if done == 0 {
retErr = linuxerr.ENOSPC
goto exitLoop
}
retErr = nil
goto exitLoop
}
gapMR.End = gapMR.Start + (hostarch.PageSize * pagesReserved)
allocMode := pgalloc.AllocateAndWritePopulate
if rw.file.inode.fs.mf.IsDiskBacked() {
// Don't populate pages for disk-backed files. Benchmarking showed that
// disk-backed pages are likely to be written back to disk before we
// can write to them. The pages fault again on write anyways. In total,
// prepopulating disk-backed pages deteriorates performance as it fails
// to eliminate future page faults and we also additionally incur
// useless disk writebacks.
allocMode = pgalloc.AllocateCallerIndirectCommit
}
fr, err := rw.file.inode.fs.mf.Allocate(gapMR.Length(), pgalloc.AllocOpts{
Kind: rw.file.memoryUsageKind,
MemCgID: rw.memCgID,
Mode: allocMode,
})
if err != nil {
retErr = err
rw.file.inode.fs.unaccountPages(pagesReserved)
goto exitLoop
}
// Write to that memory as usual.
seg, gap = rw.file.data.Insert(gap, gapMR, fr.Start), fsutil.FileRangeGapIterator{}
default:
panic("unreachable")
}
}
exitLoop:
// If the write ends beyond the file's previous size, it causes the
// file to grow.
if rw.off > rw.file.size.RacyLoad() {
rw.file.size.Store(rw.off)
}
return done, retErr
}
func (rw *regularFileReadWriter) writeToMF(fr memmap.FileRange, srcs safemem.BlockSeq) (uint64, error) {
if rw.file.inode.fs.mf.IsDiskBacked() {
// Disk-backed files are not prepopulated. The safemem.CopySeq() approach
// used below incurs a lot of page faults without page prepopulation, which
// causes a lot of context switching. Use write(2) host syscall instead,
// which makes one context switch and faults all the pages that are touched
// during the write.
return hostfd.Pwritev2(
int32(rw.file.inode.fs.mf.FD()), // fd
srcs.TakeFirst64(fr.Length()), // srcs
int64(fr.Start), // offset
0, // flags
)
}
// Get internal mappings.
ims, err := rw.file.inode.fs.mf.MapInternal(fr, hostarch.Write)
if err != nil {
return 0, err
}
// Copy to internal mappings.
return safemem.CopySeq(ims, srcs)
}
// GetSeals returns the current set of seals on a memfd inode.
func GetSeals(fd *vfs.FileDescription) (uint32, error) {
f, ok := fd.Impl().(*regularFileFD)
if !ok {
return 0, linuxerr.EINVAL
}
rf := f.inode().impl.(*regularFile)
rf.dataMu.RLock()
defer rf.dataMu.RUnlock()
return rf.seals, nil
}
// AddSeals adds new file seals to a memfd inode.
func AddSeals(fd *vfs.FileDescription, val uint32) error {
f, ok := fd.Impl().(*regularFileFD)
if !ok {
return linuxerr.EINVAL
}
rf := f.inode().impl.(*regularFile)
rf.mapsMu.Lock()
defer rf.mapsMu.Unlock()
rf.dataMu.Lock()
defer rf.dataMu.Unlock()
if rf.seals&linux.F_SEAL_SEAL != 0 {
// Seal applied which prevents addition of any new seals.
return linuxerr.EPERM
}
// F_SEAL_WRITE can only be added if there are no active writable maps.
if rf.seals&linux.F_SEAL_WRITE == 0 && val&linux.F_SEAL_WRITE != 0 {
if rf.writableMappingPages > 0 {
return linuxerr.EBUSY
}
}
// Seals can only be added, never removed.
rf.seals |= val
return nil
}
|