1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package auth
import (
"encoding/binary"
"fmt"
"strings"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/rand"
)
// KeySerial is a key ID type.
// Only strictly positive IDs are valid key IDs.
// The zero ID is meaningless but is specified when creating new keyrings.
// Strictly negative IDs are used for special key IDs which are internally
// translated to real key IDs (e.g. KEY_SPEC_SESSION_KEYRING is translated
// to the caller process's session keyring).
type KeySerial int32
// KeyType is the type of a key.
// This is an enum, but is also exposed to userspace in KEYCTL_DESCRIBE.
// For this reason, it must match Linux.
type KeyType string
// List of known key types.
const (
KeyTypeKeyring KeyType = "keyring"
// Other types are not yet supported.
)
// KeyPermission represents a permission on a key.
type KeyPermission int
// List of known key permissions.
const (
KeyView KeyPermission = iota
KeyRead
KeyWrite
KeySearch
KeyLink
KeySetAttr
)
// KeyPermissions is the full set of permissions on a single Key.
type KeyPermissions uint64
const (
// MaxKeyDescSize is the maximum size of the "Description" field of keys.
// Corresponds to `KEY_MAX_DESC_SIZE` in Linux.
MaxKeyDescSize = 4096
// maxSetSize is the maximum number of a keys in a `Set`.
// By default, Linux limits this number to 200 per non-root user.
// Here, we limit it to 200 per Set, which is stricter.
maxSetSize = 200
)
// Key represents a key in the keyrings subsystem.
//
// +stateify savable
type Key struct {
// ID is the ID of the key, also often referred to as "serial number".
// Note that key IDs passed in syscalls may be negative when they refer to
// "special keys", sometimes also referred to as "shortcut IDs".
// Key IDs of real instantiated keys are always > 0.
// The key ID never changes and is unique within a KeySet (i.e. a user
// namespace).
// It must be chosen with cryptographic randomness to make enumeration
// attacks harder.
ID KeySerial
// Description is a description of the key. It is also often referred to the
// "name" of the key. Keys are canonically identified by their ID, but the
// syscall ABI also allows look up keys by their description.
// It may not be larger than `KeyMaxDescSize`.
// Confusingly, the information returned by the KEYCTL_DESCRIBE operation,
// which you'd think means "get the key description", actually returns a
// superset of this `Description`.
Description string
// kuid is the owner of the key in the root namespace.
// kuid is only mutable in KeySet transactions.
kuid KUID
// kgid is the group of the key in the root namespace.
// kgid is only mutable in KeySet transactions.
kgid KGID
// perms is a bitfield of key permissions.
// perms is only mutable in KeySet transactions.
perms KeyPermissions
}
// Type returns the type of this key.
func (*Key) Type() KeyType {
return KeyTypeKeyring
}
// KUID returns the KUID (owner ID) of the key.
func (k *Key) KUID() KUID { return k.kuid }
// KGID returns the KGID (group ID) of the key.
func (k *Key) KGID() KGID { return k.kgid }
// Permissions returns the permission bits of the key.
func (k *Key) Permissions() KeyPermissions { return k.perms }
// String is a human-friendly representation of the key.
// Notably, this is *not* the string returned to userspace when requested
// using `KEYCTL_DESCRIBE`.
func (k *Key) String() string {
return fmt.Sprintf("id=%d,perms=0x%x,desc=%q", k.ID, k.perms, k.Description)
}
// Bitmasks for permission checks.
const (
keyPossessorPermissionsMask = 0x3f000000
keyPossessorPermissionsShift = 24
keyOwnerPermissionsMask = 0x003f0000
keyOwnerPermissionsShift = 16
keyGroupPermissionsMask = 0x00003f00
keyGroupPermissionsShift = 8
keyOtherPermissionsMask = 0x0000003f
keyOtherPermissionsShift = 0
keyPermissionView = 0x00000001
keyPermissionRead = 0x00000002
keyPermissionWrite = 0x00000004
keyPermissionSearch = 0x00000008
keyPermissionLink = 0x00000010
keyPermissionSetAttr = 0x00000020
keyPermissionAll = (keyPermissionView |
keyPermissionRead |
keyPermissionWrite |
keyPermissionSearch |
keyPermissionLink |
keyPermissionSetAttr)
)
// String returns a human-readable version of the permission bits.
func (p KeyPermissions) String() string {
var perms strings.Builder
for i, s := range [4]struct {
kind string
shift int
}{
{kind: "possessor", shift: keyPossessorPermissionsShift},
{kind: "owner", shift: keyOwnerPermissionsShift},
{kind: "group", shift: keyGroupPermissionsShift},
{kind: "other", shift: keyOtherPermissionsShift},
} {
if i != 0 {
perms.WriteRune(',')
}
perms.WriteString(s.kind)
perms.WriteRune('=')
kindPerms := p >> s.shift
for _, b := range [6]struct {
mask int
r rune
}{
{mask: keyPermissionView, r: 'v'},
{mask: keyPermissionRead, r: 'r'},
{mask: keyPermissionWrite, r: 'w'},
{mask: keyPermissionSearch, r: 's'},
{mask: keyPermissionLink, r: 'l'},
{mask: keyPermissionSetAttr, r: 'a'},
} {
if uint64(kindPerms)&uint64(b.mask) != 0 {
perms.WriteRune(b.r)
} else {
perms.WriteRune('-')
}
}
}
return fmt.Sprintf("%08x[%s]", uint64(p), perms.String())
}
// Default key settings.
const (
// Default session keyring name.
DefaultSessionKeyringName = "_ses"
// Default permissions for unnamed session keyrings:
// Possessors have full permissions.
// Owners have view and read permissions.
DefaultUnnamedSessionKeyringPermissions KeyPermissions = ((keyPermissionAll << keyPossessorPermissionsShift) |
((keyPermissionView | keyPermissionRead) << keyOwnerPermissionsShift))
// Default permissions for named session keyrings:
// Possessors have full permissions.
// Owners have view, read, and link permissions.
DefaultNamedSessionKeyringPermissions KeyPermissions = ((keyPermissionAll << keyPossessorPermissionsShift) |
((keyPermissionView | keyPermissionRead | keyPermissionLink) << keyOwnerPermissionsShift))
)
// PossessedKeys is an opaque type used during key permission check.
// When iterating over all keys, the possessed set of keys should only be
// built once. Since key possession is a recursive property, it can be
// expensive to determine. PossessedKeys holds all possessed keys at
// the time it is computed.
// PossessedKeys is short-lived; it should only live for so long as there
// are no changes to the KeySet or to any key permissions.
type PossessedKeys struct {
// possessed is a list of possessed key IDs.
possessed map[KeySerial]struct{}
}
// PossessedKeys returns a new fully-expanded set of PossessedKeys.
// The keys passed in are the set of keys that a task directly possesses:
// session keyring, process keyring, thread keyring. Each key may be nil.
// PossessedKeys is short-lived; it should only live for so long as there
// are no changes to the KeySet or to any key permissions.
func (c *Credentials) PossessedKeys(sessionKeyring, processKeyring, threadKeyring *Key) *PossessedKeys {
possessed := &PossessedKeys{possessed: make(map[KeySerial]struct{})}
for _, k := range [3]*Key{sessionKeyring, processKeyring, threadKeyring} {
if k == nil {
continue
}
// The possessor still needs "search" permission in order to actually possess anything.
if ((k.perms&keyPossessorPermissionsMask)>>keyPossessorPermissionsShift)&keyPermissionSearch != 0 {
possessed.possessed[k.ID] = struct{}{}
}
}
// If we implement keyrings that contain other keys, this is where the
// recursion would happen.
return possessed
}
// HasKeyPermission returns whether the credentials grant `permission` on `k`.
//
//go:nosplit
func (c *Credentials) HasKeyPermission(k *Key, possessed *PossessedKeys, permission KeyPermission) bool {
perms := k.perms & keyOtherPermissionsMask
if _, ok := possessed.possessed[k.ID]; ok {
perms |= (k.perms & keyPossessorPermissionsMask) >> keyPossessorPermissionsShift
}
if c.EffectiveKUID == k.kuid {
perms |= (k.perms & keyOwnerPermissionsMask) >> keyOwnerPermissionsShift
}
if c.EffectiveKGID == k.kgid {
perms |= (k.perms & keyGroupPermissionsMask) >> keyGroupPermissionsShift
}
switch permission {
case KeyView:
return perms&keyPermissionView != 0
case KeyRead:
return perms&keyPermissionRead != 0
case KeyWrite:
return perms&keyPermissionWrite != 0
case KeySearch:
return perms&keyPermissionSearch != 0
case KeyLink:
return perms&keyPermissionLink != 0
case KeySetAttr:
return perms&keyPermissionSetAttr != 0
default:
panic("unknown key permission")
}
}
// KeySet is a set of keys.
//
// +stateify savable
type KeySet struct {
// txnMu is used for transactionality of key changes.
// This blocks multiple tasks for concurrently changing the keyset or the
// permissions of any keys.
txnMu keysetTransactionMutex `state:"nosave"`
// mu protects the fields below.
// Within functions on `KeySet`, `mu` may only be locked for reading.
// Locking `mu` for writing may only be done in `LockedKeySet` functions.
mu keysetRWMutex `state:"nosave"`
// keys maps key IDs to the underlying Key struct.
// It is initially nil to save on heap space.
// It is only initialized when doing mutable transactions on it using `Do`.
keys map[KeySerial]*Key
}
// LockedKeySet is a KeySet in a transaction.
// It exposes functions that can mutate the KeySet or its keys.
type LockedKeySet struct {
*KeySet
}
// Do executes the given function as a transaction on the KeySet.
// It returns the error that `fn` returns.
// This is the only function where functions that lock the KeySet.mu for
// writing may be called.
func (s *KeySet) Do(fn func(*LockedKeySet) error) error {
s.txnMu.Lock()
defer s.txnMu.Unlock()
ls := &LockedKeySet{s}
ls.mu.Lock()
if s.keys == nil {
// Initialize the map from its zero value, if it hasn't been done yet.
s.keys = make(map[KeySerial]*Key)
}
ls.mu.Unlock()
return fn(ls)
}
// Lookup looks up a key by ID.
// Callers must exercise care to verify that the key can be accessed with
// proper credentials.
func (s *KeySet) Lookup(keyID KeySerial) (*Key, error) {
s.mu.RLock()
defer s.mu.RUnlock()
key, found := s.keys[keyID]
if !found {
return nil, linuxerr.ENOKEY
}
return key, nil
}
// ForEach iterates over all keys.
// If `fn` returns true, iteration stops immediately.
// Callers must exercise care to only process keys to which they have access.
func (s *KeySet) ForEach(fn func(*Key) bool) {
s.mu.RLock()
defer s.mu.RUnlock()
for _, key := range s.keys {
if fn(key) {
return
}
}
}
// getNewID returns a new random key ID strictly larger than zero.
// It uses cryptographic randomness in order to make enumeration attacks
// harder.
func getNewID() (KeySerial, error) {
var newID int32
for newID == 0 {
if err := binary.Read(rand.Reader, binary.LittleEndian, &newID); err != nil {
return 0, err
}
}
if newID < 0 {
newID = -newID
}
return KeySerial(newID), nil
}
// Add adds a new Key to the KeySet.
func (s *LockedKeySet) Add(description string, creds *Credentials, perms KeyPermissions) (*Key, error) {
if len(description) >= MaxKeyDescSize {
return nil, linuxerr.EINVAL
}
s.mu.Lock()
defer s.mu.Unlock()
if len(s.keys) >= maxSetSize {
return nil, linuxerr.EDQUOT
}
newID, err := getNewID()
if err != nil {
return nil, err
}
for s.keys[newID] != nil {
newID, err = getNewID()
if err != nil {
return nil, err
}
}
k := &Key{
ID: newID,
Description: description,
kuid: creds.EffectiveKUID,
kgid: creds.EffectiveKGID,
perms: perms,
}
s.keys[newID] = k
return k, nil
}
// SetPerms sets the permissions on a given key.
// The caller must have SetAttr permission on the key.
func (s *LockedKeySet) SetPerms(key *Key, newPerms KeyPermissions) {
key.perms = newPerms
}
|