File: seccomp.go

package info (click to toggle)
golang-gvisor-gvisor 0.0~20240729.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 21,276 kB
  • sloc: asm: 3,361; ansic: 1,197; cpp: 348; makefile: 92; python: 89; sh: 83
file content (320 lines) | stat: -rw-r--r-- 11,134 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package kernel

import (
	"fmt"
	"reflect"

	"golang.org/x/sys/unix"
	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/abi/sentry"
	"gvisor.dev/gvisor/pkg/bpf"
	"gvisor.dev/gvisor/pkg/errors/linuxerr"
	"gvisor.dev/gvisor/pkg/hostarch"
	"gvisor.dev/gvisor/pkg/sentry/arch"
)

const (
	maxSyscallFilterInstructions = 1 << 15

	// uncacheableBPFAction is an invalid seccomp action code.
	// It is used as a sentinel value in `taskSeccompFilters.cache` to indicate
	// that a specific syscall number is uncachable.
	uncacheableBPFAction = linux.SECCOMP_RET_ACTION_FULL
)

// taskSeccomp holds seccomp-related data for a `Task`.
//
// +stateify savable
type taskSeccomp struct {
	// filters is the list of seccomp programs that are applied to the task,
	// in the order in which they were installed.
	filters []bpf.Program

	// cache maps syscall numbers to the action to take for that syscall number.
	// It is only populated for syscalls where determining this action does not
	// involve any input data other than the architecture and the syscall
	// number in any of `filters`.
	// If any other input is necessary, the cache stores `uncacheableBPFAction`
	// to indicate that this syscall number's rules are not cacheable.
	cache [sentry.MaxSyscallNum + 1]linux.BPFAction

	// cacheAuditNumber is the AUDIT_ARCH_* constant of the task image used
	// at the time of computing `cache`.
	cacheAuditNumber uint32
}

// copy returns a copy of this `taskSeccomp`.
func (ts *taskSeccomp) copy() *taskSeccomp {
	return &taskSeccomp{
		filters:          append(([]bpf.Program)(nil), ts.filters...),
		cacheAuditNumber: ts.cacheAuditNumber,
		cache:            ts.cache,
	}
}

// dataAsBPFInput returns a serialized BPF program, only valid on the current task
// goroutine.
//
// Note: this is called for every syscall, which is a very hot path.
func dataAsBPFInput(t *Task, d *linux.SeccompData) bpf.Input {
	buf := t.CopyScratchBuffer(d.SizeBytes())
	d.MarshalUnsafe(buf)
	return buf[:d.SizeBytes()]
}

func seccompSiginfo(t *Task, errno, sysno int32, ip hostarch.Addr) *linux.SignalInfo {
	si := &linux.SignalInfo{
		Signo: int32(linux.SIGSYS),
		Errno: errno,
		Code:  linux.SYS_SECCOMP,
	}
	si.SetCallAddr(uint64(ip))
	si.SetSyscall(sysno)
	si.SetArch(t.SyscallTable().AuditNumber)
	return si
}

// checkSeccompSyscall applies the task's seccomp filters before the execution
// of syscall sysno at instruction pointer ip. (These parameters must be passed
// in because vsyscalls do not use the values in t.Arch().)
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) checkSeccompSyscall(sysno int32, args arch.SyscallArguments, ip hostarch.Addr) linux.BPFAction {
	result := linux.BPFAction(t.evaluateSyscallFilters(sysno, args, ip))
	action := result & linux.SECCOMP_RET_ACTION
	switch action {
	case linux.SECCOMP_RET_TRAP:
		// "Results in the kernel sending a SIGSYS signal to the triggering
		// task without executing the system call. ... The SECCOMP_RET_DATA
		// portion of the return value will be passed as si_errno." -
		// Documentation/prctl/seccomp_filter.txt
		t.SendSignal(seccompSiginfo(t, int32(result.Data()), sysno, ip))
		// "The return value register will contain an arch-dependent value." In
		// practice, it's ~always the syscall number.
		t.Arch().SetReturn(uintptr(sysno))

	case linux.SECCOMP_RET_ERRNO:
		// "Results in the lower 16-bits of the return value being passed to
		// userland as the errno without executing the system call."
		t.Arch().SetReturn(-uintptr(result.Data()))

	case linux.SECCOMP_RET_TRACE:
		// "When returned, this value will cause the kernel to attempt to
		// notify a ptrace()-based tracer prior to executing the system call.
		// If there is no tracer present, -ENOSYS is returned to userland and
		// the system call is not executed."
		if !t.ptraceSeccomp(result.Data()) {
			// This useless-looking temporary is needed because Go.
			tmp := uintptr(unix.ENOSYS)
			t.Arch().SetReturn(-tmp)
			return linux.SECCOMP_RET_ERRNO
		}

	case linux.SECCOMP_RET_ALLOW:
		// "Results in the system call being executed."

	case linux.SECCOMP_RET_KILL_THREAD:
		// "Results in the task exiting immediately without executing the
		// system call. The exit status of the task will be SIGSYS, not
		// SIGKILL."

	default:
		// consistent with Linux
		return linux.SECCOMP_RET_KILL_THREAD
	}
	return action
}

func (t *Task) evaluateSyscallFilters(sysno int32, args arch.SyscallArguments, ip hostarch.Addr) uint32 {
	ret := uint32(linux.SECCOMP_RET_ALLOW)
	ts := t.seccomp.Load()
	if ts == nil {
		return ret
	}
	arch := t.image.st.AuditNumber
	if arch == ts.cacheAuditNumber && sysno >= 0 && sysno <= sentry.MaxSyscallNum {
		if cached := ts.cache[sysno]; cached != uncacheableBPFAction {
			return uint32(cached)
		}
	}

	data := linux.SeccompData{
		Nr:                 sysno,
		Arch:               arch,
		InstructionPointer: uint64(ip),
	}
	// data.args is []uint64 and args is []arch.SyscallArgument (uintptr), so
	// we can't do any slicing tricks or even use copy/append here.
	for i, arg := range args {
		if i >= len(data.Args) {
			break
		}
		data.Args[i] = arg.Uint64()
	}
	input := dataAsBPFInput(t, &data)

	// "Every filter successfully installed will be evaluated (in reverse
	// order) for each system call the task makes." - kernel/seccomp.c
	for i := len(ts.filters) - 1; i >= 0; i-- {
		thisRet, err := bpf.Exec[bpf.NativeEndian](ts.filters[i], input)
		if err != nil {
			t.Debugf("seccomp-bpf filter %d returned error: %v", i, err)
			thisRet = uint32(linux.SECCOMP_RET_KILL_THREAD)
		}
		// "If multiple filters exist, the return value for the evaluation of a
		// given system call will always use the highest precedent value." -
		// Documentation/prctl/seccomp_filter.txt
		//
		// (Note that this contradicts prctl(2): "If the filters permit prctl()
		// calls, then additional filters can be added; they are run in order
		// until the first non-allow result is seen." prctl(2) is incorrect.)
		//
		// "The ordering ensures that a min_t() over composed return values
		// always selects the least permissive choice." -
		// include/uapi/linux/seccomp.h
		if (thisRet & linux.SECCOMP_RET_ACTION) < (ret & linux.SECCOMP_RET_ACTION) {
			ret = thisRet
		}
	}

	return ret
}

// checkFilterCacheability executes `program` on the given `input`, and
// checks if its result is cacheable. If it is, it returns that result.
func checkFilterCacheability(program bpf.Program, input bpf.Input) (uint32, error) {
	// Look up Nr and Arch fields, we'll use their offsets later
	// to verify whether they were accessed.
	sdType := reflect.TypeOf(linux.SeccompData{})
	nrField, ok := sdType.FieldByName("Nr")
	if !ok {
		panic("linux.SeccompData.Nr field not found")
	}
	archField, ok := sdType.FieldByName("Arch")
	if !ok {
		panic("linux.SeccompData.Arch field not found")
	}

	exec, err := bpf.InstrumentedExec[bpf.NativeEndian](program, input)
	if err != nil {
		return 0, err
	}
	for offset, accessed := range exec.InputAccessed {
		if !accessed {
			continue // Input byte not accessed by the program.
		}
		if uintptr(offset) >= nrField.Offset && uintptr(offset) < nrField.Offset+nrField.Type.Size() {
			continue // The program accessed the "Nr" field, this is OK.
		}
		if uintptr(offset) >= archField.Offset && uintptr(offset) < archField.Offset+archField.Type.Size() {
			continue // The program accessed the "Arch" field, this is OK.
		}
		return 0, fmt.Errorf("program accessed byte at offset %d which is not the sysno or arch field", offset)
	}
	return exec.ReturnValue, nil
}

// populateCache recomputes `ts.cache` from `ts.filters`.
func (ts *taskSeccomp) populateCache(t *Task) {
	ts.cacheAuditNumber = t.image.st.AuditNumber
	sd := linux.SeccompData{}
	input := bpf.Input(make([]byte, sd.SizeBytes()))

	for sysno := int32(0); sysno <= sentry.MaxSyscallNum; sysno++ {
		sd.Nr = sysno
		sd.Arch = ts.cacheAuditNumber
		clear(input)
		sd.MarshalBytes(input)
		sysnoIsCacheable := true
		ret := linux.BPFAction(linux.SECCOMP_RET_ALLOW)
		// See notes in `evaluateSyscallFilters` for how to properly interpret
		// seccomp filter and results. We use the same approach here: iterate
		// through filters backwards, and take the smallest result.
		// If any filter is not cacheable, then we cannot cache the result for
		// this sysno.
		for i := len(ts.filters) - 1; i >= 0; i-- {
			result, cacheErr := checkFilterCacheability(ts.filters[i], input)
			if cacheErr != nil {
				sysnoIsCacheable = false
				break
			}
			if (linux.BPFAction(result) & linux.SECCOMP_RET_ACTION) < (ret & linux.SECCOMP_RET_ACTION) {
				ret = linux.BPFAction(result)
			}
		}
		if sysnoIsCacheable {
			ts.cache[sysno] = ret
		} else {
			ts.cache[sysno] = uncacheableBPFAction
		}
	}
}

// AppendSyscallFilter adds BPF program p as a system call filter.
//
// Preconditions: The caller must be running on the task goroutine.
func (t *Task) AppendSyscallFilter(p bpf.Program, syncAll bool) error {
	// While syscallFilters are an atomic.Value we must take the mutex to prevent
	// our read-copy-update from happening while another task is syncing syscall
	// filters to us, this keeps the filters in a consistent state.
	t.tg.signalHandlers.mu.Lock()
	defer t.tg.signalHandlers.mu.Unlock()

	// Cap the combined length of all syscall filters (plus a penalty of 4
	// instructions per filter beyond the first) to maxSyscallFilterInstructions.
	// This restriction is inherited from Linux.
	totalLength := p.Length()
	newSeccomp := &taskSeccomp{}

	if ts := t.seccomp.Load(); ts != nil {
		for _, f := range ts.filters {
			totalLength += f.Length() + 4
		}
		newSeccomp.filters = append(newSeccomp.filters, ts.filters...)
	}

	if totalLength > maxSyscallFilterInstructions {
		return linuxerr.ENOMEM
	}

	newSeccomp.filters = append(newSeccomp.filters, p)
	newSeccomp.populateCache(t)
	t.seccomp.Store(newSeccomp)

	if syncAll {
		// Note: No new privs is always assumed to be set.
		for ot := t.tg.tasks.Front(); ot != nil; ot = ot.Next() {
			if ot != t {
				seccompCopy := newSeccomp.copy()
				seccompCopy.populateCache(ot)
				ot.seccomp.Store(seccompCopy)
			}
		}
	}

	return nil
}

// SeccompMode returns a SECCOMP_MODE_* constant indicating the task's current
// seccomp syscall filtering mode, appropriate for both prctl(PR_GET_SECCOMP)
// and /proc/[pid]/status.
func (t *Task) SeccompMode() int {
	if ts := t.seccomp.Load(); ts != nil && len(ts.filters) > 0 {
		return linux.SECCOMP_MODE_FILTER
	}
	return linux.SECCOMP_MODE_NONE
}