| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 
 | // Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package loader loads an executable file into a MemoryManager.
package loader
import (
	"bytes"
	"fmt"
	"io"
	"path"
	"gvisor.dev/gvisor/pkg/abi"
	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/abi/linux/errno"
	"gvisor.dev/gvisor/pkg/context"
	"gvisor.dev/gvisor/pkg/cpuid"
	"gvisor.dev/gvisor/pkg/errors/linuxerr"
	"gvisor.dev/gvisor/pkg/fspath"
	"gvisor.dev/gvisor/pkg/hostarch"
	"gvisor.dev/gvisor/pkg/rand"
	"gvisor.dev/gvisor/pkg/sentry/arch"
	"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
	"gvisor.dev/gvisor/pkg/sentry/mm"
	"gvisor.dev/gvisor/pkg/sentry/vfs"
	"gvisor.dev/gvisor/pkg/syserr"
	"gvisor.dev/gvisor/pkg/usermem"
)
const (
	securityCapability = linux.XATTR_SECURITY_PREFIX + "capability"
)
// LoadArgs holds specifications for an executable file to be loaded.
type LoadArgs struct {
	// MemoryManager is the memory manager to load the executable into.
	MemoryManager *mm.MemoryManager
	// RemainingTraversals is the maximum number of symlinks to follow to
	// resolve Filename. This counter is passed by reference to keep it
	// updated throughout the call stack.
	RemainingTraversals *uint
	// ResolveFinal indicates whether the final link of Filename should be
	// resolved, if it is a symlink.
	ResolveFinal bool
	// Filename is the path for the executable.
	Filename string
	// File is an open FD of the executable. If File is not nil, then File will
	// be loaded and Filename will be ignored.
	//
	// The caller is responsible for checking that the user can execute this file.
	File *vfs.FileDescription
	// Root is the current filesystem root.
	Root vfs.VirtualDentry
	// WorkingDir is the current working directory.
	WorkingDir vfs.VirtualDentry
	// If AfterOpen is not nil, it is called after every successful call to
	// Opener.OpenPath().
	AfterOpen func(f *vfs.FileDescription)
	// CloseOnExec indicates that the executable (or one of its parent
	// directories) was opened with O_CLOEXEC. If the executable is an
	// interpreter script, then cause an ENOENT error to occur, since the
	// script would otherwise be inaccessible to the interpreter.
	CloseOnExec bool
	// Argv is the vector of arguments to pass to the executable.
	Argv []string
	// Envv is the vector of environment variables to pass to the
	// executable.
	Envv []string
	// Features specifies the CPU feature set for the executable.
	Features cpuid.FeatureSet
}
// openPath opens args.Filename and checks that it is valid for loading.
//
// openPath returns an *fs.Dirent and *fs.File for args.Filename, which is not
// installed in the Task FDTable. The caller takes ownership of both.
//
// args.Filename must be a readable, executable, regular file.
func openPath(ctx context.Context, args LoadArgs) (*vfs.FileDescription, error) {
	if args.Filename == "" {
		ctx.Infof("cannot open empty name")
		return nil, linuxerr.ENOENT
	}
	// TODO(gvisor.dev/issue/160): Linux requires only execute permission,
	// not read. However, our backing filesystems may prevent us from reading
	// the file without read permission. Additionally, a task with a
	// non-readable executable has additional constraints on access via
	// ptrace and procfs.
	opts := vfs.OpenOptions{
		Flags:    linux.O_RDONLY,
		FileExec: true,
	}
	vfsObj := args.Root.Mount().Filesystem().VirtualFilesystem()
	creds := auth.CredentialsFromContext(ctx)
	path := fspath.Parse(args.Filename)
	pop := &vfs.PathOperation{
		Root:               args.Root,
		Start:              args.WorkingDir,
		Path:               path,
		FollowFinalSymlink: args.ResolveFinal,
	}
	if path.Absolute {
		pop.Start = args.Root
	}
	fd, err := vfsObj.OpenAt(ctx, creds, pop, &opts)
	if err != nil {
		return nil, err
	}
	if args.AfterOpen != nil {
		args.AfterOpen(fd)
	}
	return fd, nil
}
// checkIsRegularFile prevents us from trying to execute a directory, pipe, etc.
func checkIsRegularFile(ctx context.Context, fd *vfs.FileDescription, filename string) error {
	stat, err := fd.Stat(ctx, vfs.StatOptions{})
	if err != nil {
		return err
	}
	if t := linux.FileMode(stat.Mode).FileType(); t != linux.ModeRegular {
		ctx.Infof("%q is not a regular file: %v", filename, t)
		return linuxerr.EACCES
	}
	return nil
}
// allocStack allocates and maps a stack in to any available part of the address space.
func allocStack(ctx context.Context, m *mm.MemoryManager, a *arch.Context64) (*arch.Stack, error) {
	ar, err := m.MapStack(ctx)
	if err != nil {
		return nil, err
	}
	return &arch.Stack{Arch: a, IO: m, Bottom: ar.End}, nil
}
const (
	// maxLoaderAttempts is the maximum number of attempts to try to load
	// an interpreter scripts, to prevent loops. 6 (initial + 5 changes) is
	// what the Linux kernel allows (fs/exec.c:search_binary_handler).
	maxLoaderAttempts = 6
)
// loadExecutable loads an executable that is pointed to by args.File. The
// caller is responsible for checking that the user can execute this file.
// If nil, the path args.Filename is resolved and loaded (check that the user
// can execute this file is done here in this case). If the executable is an
// interpreter script rather than an ELF, the binary of the corresponding
// interpreter will be loaded.
//
// It returns:
//   - loadedELF, description of the loaded binary
//   - arch.Context64 matching the binary arch
//   - fs.Dirent of the binary file
//   - Possibly updated args.Argv
func loadExecutable(ctx context.Context, args LoadArgs) (loadedELF, *arch.Context64, *vfs.FileDescription, []string, error) {
	for i := 0; i < maxLoaderAttempts; i++ {
		if args.File == nil {
			var err error
			args.File, err = openPath(ctx, args)
			if err != nil {
				ctx.Infof("Error opening %s: %v", args.Filename, err)
				return loadedELF{}, nil, nil, nil, err
			}
			// Ensure file is release in case the code loops or errors out.
			defer args.File.DecRef(ctx)
		} else {
			if err := checkIsRegularFile(ctx, args.File, args.Filename); err != nil {
				return loadedELF{}, nil, nil, nil, err
			}
		}
		// Check the header. Is this an ELF or interpreter script?
		var hdr [4]uint8
		// N.B. We assume that reading from a regular file cannot block.
		_, err := args.File.ReadFull(ctx, usermem.BytesIOSequence(hdr[:]), 0)
		// Allow unexpected EOF, as a valid executable could be only three bytes
		// (e.g., #!a).
		if err != nil && err != io.ErrUnexpectedEOF {
			if err == io.EOF {
				err = linuxerr.ENOEXEC
			}
			return loadedELF{}, nil, nil, nil, err
		}
		switch {
		case bytes.Equal(hdr[:], []byte(elfMagic)):
			loaded, ac, err := loadELF(ctx, args)
			if err != nil {
				ctx.Infof("Error loading ELF: %v", err)
				return loadedELF{}, nil, nil, nil, err
			}
			// An ELF is always terminal. Hold on to file.
			args.File.IncRef()
			return loaded, ac, args.File, args.Argv, err
		case bytes.Equal(hdr[:2], []byte(interpreterScriptMagic)):
			if args.CloseOnExec {
				return loadedELF{}, nil, nil, nil, linuxerr.ENOENT
			}
			args.Filename, args.Argv, err = parseInterpreterScript(ctx, args.Filename, args.File, args.Argv)
			if err != nil {
				ctx.Infof("Error loading interpreter script: %v", err)
				return loadedELF{}, nil, nil, nil, err
			}
			// Refresh the traversal limit for the interpreter.
			*args.RemainingTraversals = linux.MaxSymlinkTraversals
		default:
			ctx.Infof("Unknown magic: %v", hdr)
			return loadedELF{}, nil, nil, nil, linuxerr.ENOEXEC
		}
		// Set to nil in case we loop on a Interpreter Script.
		args.File = nil
	}
	return loadedELF{}, nil, nil, nil, linuxerr.ELOOP
}
// ImageInfo represents the information for the loaded image.
type ImageInfo struct {
	// The target operating system of the image.
	OS abi.OS
	// AMD64 context.
	Arch *arch.Context64
	// The base name of the binary.
	Name string
	// The binary's file capability.
	FileCaps string
}
// Load loads args.File into a MemoryManager. If args.File is nil, the path
// args.Filename is resolved and loaded instead.
//
// If Load returns ErrSwitchFile it should be called again with the returned
// path and argv.
//
// Preconditions:
//   - The Task MemoryManager is empty.
//   - Load is called on the Task goroutine.
func Load(ctx context.Context, args LoadArgs, extraAuxv []arch.AuxEntry, vdso *VDSO) (ImageInfo, *syserr.Error) {
	// Load the executable itself.
	loaded, ac, file, newArgv, err := loadExecutable(ctx, args)
	if err != nil {
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("failed to load %s: %v", args.Filename, err), syserr.FromError(err).ToLinux())
	}
	defer file.DecRef(ctx)
	xattr, err := file.GetXattr(ctx, &vfs.GetXattrOptions{Name: securityCapability, Size: linux.XATTR_CAPS_SZ_3})
	switch {
	case linuxerr.Equals(linuxerr.ENODATA, err), linuxerr.Equals(linuxerr.ENOTSUP, err):
		xattr = ""
	case err != nil:
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("failed to read file capabilities of %s: %v", args.Filename, err), syserr.FromError(err).ToLinux())
	}
	// Load the VDSO.
	vdsoAddr, err := loadVDSO(ctx, args.MemoryManager, vdso, loaded)
	if err != nil {
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("error loading VDSO: %v", err), syserr.FromError(err).ToLinux())
	}
	// Setup the heap. brk starts at the next page after the end of the
	// executable. Userspace can assume that the remainder of the page after
	// loaded.end is available for its use.
	e, ok := loaded.end.RoundUp()
	if !ok {
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("brk overflows: %#x", loaded.end), errno.ENOEXEC)
	}
	args.MemoryManager.BrkSetup(ctx, e)
	// Allocate our stack.
	stack, err := allocStack(ctx, args.MemoryManager, ac)
	if err != nil {
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("Failed to allocate stack: %v", err), syserr.FromError(err).ToLinux())
	}
	// Push the original filename to the stack, for AT_EXECFN.
	if _, err := stack.PushNullTerminatedByteSlice([]byte(args.Filename)); err != nil {
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("Failed to push exec filename: %v", err), syserr.FromError(err).ToLinux())
	}
	execfn := stack.Bottom
	// Push 16 random bytes on the stack which AT_RANDOM will point to.
	var b [16]byte
	if _, err := rand.Read(b[:]); err != nil {
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("Failed to read random bytes: %v", err), syserr.FromError(err).ToLinux())
	}
	if _, err = stack.PushNullTerminatedByteSlice(b[:]); err != nil {
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("Failed to push random bytes: %v", err), syserr.FromError(err).ToLinux())
	}
	random := stack.Bottom
	c := auth.CredentialsFromContext(ctx)
	// Add generic auxv entries.
	auxv := append(loaded.auxv, arch.Auxv{
		arch.AuxEntry{linux.AT_UID, hostarch.Addr(c.RealKUID.In(c.UserNamespace).OrOverflow())},
		arch.AuxEntry{linux.AT_EUID, hostarch.Addr(c.EffectiveKUID.In(c.UserNamespace).OrOverflow())},
		arch.AuxEntry{linux.AT_GID, hostarch.Addr(c.RealKGID.In(c.UserNamespace).OrOverflow())},
		arch.AuxEntry{linux.AT_EGID, hostarch.Addr(c.EffectiveKGID.In(c.UserNamespace).OrOverflow())},
		// The conditions that require AT_SECURE = 1 never arise. See
		// kernel.Task.updateCredsForExecLocked.
		arch.AuxEntry{linux.AT_SECURE, 0},
		arch.AuxEntry{linux.AT_CLKTCK, linux.CLOCKS_PER_SEC},
		arch.AuxEntry{linux.AT_EXECFN, execfn},
		arch.AuxEntry{linux.AT_RANDOM, random},
		arch.AuxEntry{linux.AT_PAGESZ, hostarch.PageSize},
		arch.AuxEntry{linux.AT_SYSINFO_EHDR, vdsoAddr},
	}...)
	auxv = append(auxv, extraAuxv...)
	sl, err := stack.Load(newArgv, args.Envv, auxv)
	if err != nil {
		return ImageInfo{}, syserr.NewDynamic(fmt.Sprintf("Failed to load stack: %v", err), syserr.FromError(err).ToLinux())
	}
	m := args.MemoryManager
	m.SetArgvStart(sl.ArgvStart)
	m.SetArgvEnd(sl.ArgvEnd)
	m.SetEnvvStart(sl.EnvvStart)
	m.SetEnvvEnd(sl.EnvvEnd)
	m.SetAuxv(auxv)
	m.SetExecutable(ctx, file)
	m.SetVDSOSigReturn(uint64(vdsoAddr) + vdsoSigreturnOffset - vdsoPrelink)
	ac.SetIP(uintptr(loaded.entry))
	ac.SetStack(uintptr(stack.Bottom))
	name := path.Base(args.Filename)
	if len(name) > linux.TASK_COMM_LEN-1 {
		name = name[:linux.TASK_COMM_LEN-1]
	}
	return ImageInfo{
		OS:       loaded.os,
		Arch:     ac,
		Name:     name,
		FileCaps: xattr,
	}, nil
}
 |