1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mm
import (
"fmt"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/platform"
)
// AddressSpace returns the platform.AddressSpace bound to mm.
//
// Preconditions: The caller must have called mm.Activate().
func (mm *MemoryManager) AddressSpace() platform.AddressSpace {
if mm.active.Load() == 0 {
panic("trying to use inactive address space?")
}
return mm.as
}
// Activate ensures this MemoryManager has a platform.AddressSpace.
//
// The caller must not hold any locks when calling Activate.
//
// When this MemoryManager is no longer needed by a task, it should call
// Deactivate to release the reference.
func (mm *MemoryManager) Activate(ctx context.Context) error {
// Fast path: the MemoryManager already has an active
// platform.AddressSpace, and we just need to indicate that we need it too.
for {
active := mm.active.Load()
if active == 0 {
// Fall back to the slow path.
break
}
if mm.active.CompareAndSwap(active, active+1) {
return nil
}
}
for {
// Slow path: may need to synchronize with other goroutines changing
// mm.active to or from zero.
mm.activeMu.Lock()
// Inline Unlock instead of using a defer for performance since this
// method is commonly in the hot-path.
// Check if we raced with another goroutine performing activation.
if mm.active.Load() > 0 {
// This can't race; Deactivate can't decrease mm.active from 1 to 0
// without holding activeMu.
mm.active.Add(1)
mm.activeMu.Unlock()
return nil
}
// Do we have a context? If so, then we never unmapped it. This can
// only be the case if !mm.p.CooperativelySchedulesAddressSpace().
if mm.as != nil {
mm.active.Store(1)
mm.activeMu.Unlock()
return nil
}
// Get a new address space. We must force unmapping by passing nil to
// NewAddressSpace if requested. (As in the nil interface object, not a
// typed nil.)
mappingsID := (any)(mm)
if mm.unmapAllOnActivate {
mappingsID = nil
}
as, c, err := mm.p.NewAddressSpace(mappingsID)
if err != nil {
mm.activeMu.Unlock()
return err
}
if as == nil {
// AddressSpace is unavailable, we must wait.
//
// activeMu must not be held while waiting, as the user of the address
// space we are waiting on may attempt to take activeMu.
mm.activeMu.Unlock()
sleep := mm.p.CooperativelySchedulesAddressSpace() && mm.sleepForActivation
if sleep {
// Mark this task sleeping while waiting for the address space to
// prevent the watchdog from reporting it as a stuck task.
ctx.UninterruptibleSleepStart(false)
}
<-c
if sleep {
ctx.UninterruptibleSleepFinish(false)
}
continue
}
// Okay, we could restore all mappings at this point.
// But forget that. Let's just let them fault in.
mm.as = as
// Unmapping is done, if necessary.
mm.unmapAllOnActivate = false
// Now that m.as has been assigned, we can set m.active to a non-zero value
// to enable the fast path.
mm.active.Store(1)
mm.activeMu.Unlock()
return nil
}
}
// Deactivate releases a reference to the MemoryManager.
func (mm *MemoryManager) Deactivate() {
// Fast path: this is not the last goroutine to deactivate the
// MemoryManager.
for {
active := mm.active.Load()
if active == 1 {
// Fall back to the slow path.
break
}
if mm.active.CompareAndSwap(active, active-1) {
return
}
}
mm.activeMu.Lock()
// Same as Activate.
// Still active?
if mm.active.Add(-1) > 0 {
mm.activeMu.Unlock()
return
}
// Can we hold on to the address space?
if !mm.p.CooperativelySchedulesAddressSpace() {
mm.activeMu.Unlock()
return
}
// Release the address space.
mm.as.Release()
// Lost it.
mm.as = nil
mm.activeMu.Unlock()
}
// mapASLocked maps addresses in ar into mm.as.
//
// Preconditions:
// - mm.activeMu must be locked.
// - mm.as != nil.
// - ar.Length() != 0.
// - ar must be page-aligned.
// - pseg == mm.pmas.LowerBoundSegment(ar.Start).
func (mm *MemoryManager) mapASLocked(pseg pmaIterator, ar hostarch.AddrRange, platformEffect memmap.MMapPlatformEffect) error {
// By default, map entire pmas at a time, under the assumption that there
// is no cost to mapping more of a pma than necessary.
mapAR := hostarch.AddrRange{0, ^hostarch.Addr(hostarch.PageSize - 1)}
if platformEffect != memmap.PlatformEffectDefault {
// When explicitly committing, only map ar, since overmapping may incur
// unexpected resource usage. When explicitly populating, do the same
// since an underlying device file may be sensitive to the mapped
// range.
mapAR = ar
} else if mapUnit := mm.p.MapUnit(); mapUnit != 0 {
// Limit the range we map to ar, aligned to mapUnit.
mapMask := hostarch.Addr(mapUnit - 1)
mapAR.Start = ar.Start &^ mapMask
// If rounding ar.End up overflows, just keep the existing mapAR.End.
if end := (ar.End + mapMask) &^ mapMask; end >= ar.End {
mapAR.End = end
}
}
if checkInvariants {
if !mapAR.IsSupersetOf(ar) {
panic(fmt.Sprintf("mapAR %#v is not a superset of ar %#v", mapAR, ar))
}
}
// Since this checks ar.End and not mapAR.End, we will never map a pma that
// is not required.
for pseg.Ok() && pseg.Start() < ar.End {
pma := pseg.ValuePtr()
pmaAR := pseg.Range()
pmaMapAR := pmaAR.Intersect(mapAR)
perms := pma.effectivePerms
if pma.needCOW {
perms.Write = false
}
if perms.Any() { // MapFile precondition
if err := mm.as.MapFile(pmaMapAR.Start, pma.file, pseg.fileRangeOf(pmaMapAR), perms, platformEffect == memmap.PlatformEffectCommit); err != nil {
return err
}
}
pseg = pseg.NextSegment()
}
return nil
}
// unmapASLocked removes all AddressSpace mappings for addresses in ar.
//
// Preconditions: mm.activeMu must be locked.
func (mm *MemoryManager) unmapASLocked(ar hostarch.AddrRange) {
if ar.Length() == 0 {
return
}
if mm.as == nil {
// No AddressSpace? Force all mappings to be unmapped on the next
// Activate.
mm.unmapAllOnActivate = true
return
}
// unmapASLocked doesn't require vmas or pmas to exist for ar, so it can be
// passed ranges that include addresses that can't be mapped by the
// application.
ar = ar.Intersect(mm.applicationAddrRange())
// Note that this AddressSpace may or may not be active. If the
// platform does not require cooperative sharing of AddressSpaces, they
// are retained between Deactivate/Activate calls. Despite not being
// active, it is still valid to perform operations on these address
// spaces.
mm.as.Unmap(ar.Start, uint64(ar.Length()))
}
|