1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mm
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/memmap"
"gvisor.dev/gvisor/pkg/sentry/pgalloc"
"gvisor.dev/gvisor/pkg/sentry/usage"
"gvisor.dev/gvisor/pkg/usermem"
)
// aioManager creates and manages asynchronous I/O contexts.
//
// +stateify savable
type aioManager struct {
// mu protects below.
mu aioManagerMutex `state:"nosave"`
// aioContexts is the set of asynchronous I/O contexts.
contexts map[uint64]*AIOContext
}
func (mm *MemoryManager) destroyAIOManager(ctx context.Context) {
mm.aioManager.mu.Lock()
defer mm.aioManager.mu.Unlock()
for id := range mm.aioManager.contexts {
mm.destroyAIOContextLocked(ctx, id)
}
}
// newAIOContext creates a new context for asynchronous I/O.
//
// Returns false if 'id' is currently in use.
func (a *aioManager) newAIOContext(events uint32, id uint64) bool {
a.mu.Lock()
defer a.mu.Unlock()
if _, ok := a.contexts[id]; ok {
return false
}
a.contexts[id] = &AIOContext{
requestReady: make(chan struct{}, 1),
maxOutstanding: events,
}
return true
}
// destroyAIOContext destroys an asynchronous I/O context. It doesn't wait for
// for pending requests to complete. Returns the destroyed AIOContext so it can
// be drained.
//
// Nil is returned if the context does not exist.
//
// Precondition: mm.aioManager.mu is locked.
func (mm *MemoryManager) destroyAIOContextLocked(ctx context.Context, id uint64) *AIOContext {
aioCtx, ok := mm.aioManager.contexts[id]
if !ok {
return nil
}
delete(mm.aioManager.contexts, id)
aioCtx.destroy()
return aioCtx
}
// lookupAIOContext looks up the given context.
//
// Returns false if context does not exist.
func (a *aioManager) lookupAIOContext(id uint64) (*AIOContext, bool) {
a.mu.Lock()
defer a.mu.Unlock()
ctx, ok := a.contexts[id]
return ctx, ok
}
// ioResult is a completed I/O operation.
//
// +stateify savable
type ioResult struct {
data any
ioEntry
}
// AIOContext is a single asynchronous I/O context.
//
// +stateify savable
type AIOContext struct {
// requestReady is the notification channel used for all requests.
requestReady chan struct{} `state:"nosave"`
// mu protects below.
mu aioContextMutex `state:"nosave"`
// results is the set of completed requests.
results ioList
// maxOutstanding is the maximum number of outstanding entries; this value
// is immutable.
maxOutstanding uint32
// outstanding is the number of requests outstanding; this will effectively
// be the number of entries in the result list or that are expected to be
// added to the result list.
outstanding uint32
// dead is set when the context is destroyed.
dead bool `state:"zerovalue"`
}
// destroy marks the context dead.
func (aio *AIOContext) destroy() {
aio.mu.Lock()
defer aio.mu.Unlock()
aio.dead = true
aio.checkForDone()
}
// Preconditions: ctx.mu must be held by caller.
func (aio *AIOContext) checkForDone() {
if aio.dead && aio.outstanding == 0 {
close(aio.requestReady)
aio.requestReady = nil
}
}
// Prepare reserves space for a new request, returning nil if available.
// Returns EAGAIN if the context is busy and EINVAL if the context is dead.
func (aio *AIOContext) Prepare() error {
aio.mu.Lock()
defer aio.mu.Unlock()
if aio.dead {
// Context died after the caller looked it up.
return linuxerr.EINVAL
}
if aio.outstanding >= aio.maxOutstanding {
// Context is busy.
return linuxerr.EAGAIN
}
aio.outstanding++
return nil
}
// PopRequest pops a completed request if available, this function does not do
// any blocking. Returns false if no request is available.
func (aio *AIOContext) PopRequest() (any, bool) {
aio.mu.Lock()
defer aio.mu.Unlock()
// Is there anything ready?
if e := aio.results.Front(); e != nil {
if aio.outstanding == 0 {
panic("AIOContext outstanding is going negative")
}
aio.outstanding--
aio.results.Remove(e)
aio.checkForDone()
return e.data, true
}
return nil, false
}
// FinishRequest finishes a pending request. It queues up the data
// and notifies listeners.
func (aio *AIOContext) FinishRequest(data any) {
aio.mu.Lock()
defer aio.mu.Unlock()
// Push to the list and notify opportunistically. The channel notify
// here is guaranteed to be safe because outstanding must be non-zero.
// The requestReady channel is only closed when outstanding reaches zero.
aio.results.PushBack(&ioResult{data: data})
select {
case aio.requestReady <- struct{}{}:
default:
}
}
// WaitChannel returns a channel that is notified when an AIO request is
// completed. Returns nil if the context is destroyed and there are no more
// outstanding requests.
func (aio *AIOContext) WaitChannel() chan struct{} {
aio.mu.Lock()
defer aio.mu.Unlock()
return aio.requestReady
}
// Dead returns true if the context has been destroyed.
func (aio *AIOContext) Dead() bool {
aio.mu.Lock()
defer aio.mu.Unlock()
return aio.dead
}
// CancelPendingRequest forgets about a request that hasn't yet completed.
func (aio *AIOContext) CancelPendingRequest() {
aio.mu.Lock()
defer aio.mu.Unlock()
if aio.outstanding == 0 {
panic("AIOContext outstanding is going negative")
}
aio.outstanding--
aio.checkForDone()
}
// Drain drops all completed requests. Pending requests remain untouched.
func (aio *AIOContext) Drain() {
aio.mu.Lock()
defer aio.mu.Unlock()
if aio.outstanding == 0 {
return
}
size := uint32(aio.results.Len())
if aio.outstanding < size {
panic("AIOContext outstanding is going negative")
}
aio.outstanding -= size
aio.results.Reset()
aio.checkForDone()
}
// aioMappable implements memmap.MappingIdentity and memmap.Mappable for AIO
// ring buffers.
//
// +stateify savable
type aioMappable struct {
aioMappableRefs
mf *pgalloc.MemoryFile `state:"nosave"`
fr memmap.FileRange
}
var aioRingBufferSize = uint64(hostarch.Addr(linux.AIORingSize).MustRoundUp())
func newAIOMappable(ctx context.Context, mf *pgalloc.MemoryFile) (*aioMappable, error) {
fr, err := mf.Allocate(aioRingBufferSize, pgalloc.AllocOpts{Kind: usage.Anonymous, MemCgID: pgalloc.MemoryCgroupIDFromContext(ctx)})
if err != nil {
return nil, err
}
m := aioMappable{mf: mf, fr: fr}
m.InitRefs()
return &m, nil
}
// DecRef implements refs.RefCounter.DecRef.
func (m *aioMappable) DecRef(ctx context.Context) {
m.aioMappableRefs.DecRef(func() {
m.mf.DecRef(m.fr)
})
}
// MappedName implements memmap.MappingIdentity.MappedName.
func (m *aioMappable) MappedName(ctx context.Context) string {
return "[aio]"
}
// DeviceID implements memmap.MappingIdentity.DeviceID.
func (m *aioMappable) DeviceID() uint64 {
return 0
}
// InodeID implements memmap.MappingIdentity.InodeID.
func (m *aioMappable) InodeID() uint64 {
return 0
}
// Msync implements memmap.MappingIdentity.Msync.
func (m *aioMappable) Msync(ctx context.Context, mr memmap.MappableRange) error {
// Linux: aio_ring_fops.fsync == NULL
return linuxerr.EINVAL
}
// AddMapping implements memmap.Mappable.AddMapping.
func (m *aioMappable) AddMapping(_ context.Context, _ memmap.MappingSpace, ar hostarch.AddrRange, offset uint64, _ bool) error {
// Don't allow mappings to be expanded (in Linux, fs/aio.c:aio_ring_mmap()
// sets VM_DONTEXPAND).
if offset != 0 || uint64(ar.Length()) != aioRingBufferSize {
return linuxerr.EFAULT
}
return nil
}
// RemoveMapping implements memmap.Mappable.RemoveMapping.
func (m *aioMappable) RemoveMapping(context.Context, memmap.MappingSpace, hostarch.AddrRange, uint64, bool) {
}
// CopyMapping implements memmap.Mappable.CopyMapping.
func (m *aioMappable) CopyMapping(ctx context.Context, ms memmap.MappingSpace, srcAR, dstAR hostarch.AddrRange, offset uint64, _ bool) error {
// Don't allow mappings to be expanded (in Linux, fs/aio.c:aio_ring_mmap()
// sets VM_DONTEXPAND).
if offset != 0 || uint64(dstAR.Length()) != aioRingBufferSize {
return linuxerr.EFAULT
}
// Require that the mapping correspond to a live AIOContext. Compare
// Linux's fs/aio.c:aio_ring_mremap().
mm, ok := ms.(*MemoryManager)
if !ok {
return linuxerr.EINVAL
}
am := &mm.aioManager
am.mu.Lock()
defer am.mu.Unlock()
oldID := uint64(srcAR.Start)
aioCtx, ok := am.contexts[oldID]
if !ok {
return linuxerr.EINVAL
}
aioCtx.mu.Lock()
defer aioCtx.mu.Unlock()
if aioCtx.dead {
return linuxerr.EINVAL
}
// Use the new ID for the AIOContext.
am.contexts[uint64(dstAR.Start)] = aioCtx
delete(am.contexts, oldID)
return nil
}
// Translate implements memmap.Mappable.Translate.
func (m *aioMappable) Translate(ctx context.Context, required, optional memmap.MappableRange, at hostarch.AccessType) ([]memmap.Translation, error) {
var err error
if required.End > m.fr.Length() {
err = &memmap.BusError{linuxerr.EFAULT}
}
if source := optional.Intersect(memmap.MappableRange{0, m.fr.Length()}); source.Length() != 0 {
return []memmap.Translation{
{
Source: source,
File: m.mf,
Offset: m.fr.Start + source.Start,
Perms: hostarch.AnyAccess,
},
}, err
}
return nil, err
}
// InvalidateUnsavable implements memmap.Mappable.InvalidateUnsavable.
func (m *aioMappable) InvalidateUnsavable(ctx context.Context) error {
return nil
}
// NewAIOContext creates a new context for asynchronous I/O.
//
// NewAIOContext is analogous to Linux's fs/aio.c:ioctx_alloc().
func (mm *MemoryManager) NewAIOContext(ctx context.Context, events uint32) (uint64, error) {
// libaio get_ioevents() expects context "handle" to be a valid address.
// libaio peeks inside looking for a magic number. This function allocates
// a page per context and keeps it set to zeroes to ensure it will not
// match AIO_RING_MAGIC and make libaio happy.
m, err := newAIOMappable(ctx, mm.mf)
if err != nil {
return 0, err
}
defer m.DecRef(ctx)
addr, err := mm.MMap(ctx, memmap.MMapOpts{
Length: aioRingBufferSize,
MappingIdentity: m,
Mappable: m,
// Linux uses "do_mmap_pgoff(..., PROT_READ | PROT_WRITE, ...)" in
// fs/aio.c:aio_setup_ring(). Since we don't implement AIO_RING_MAGIC,
// user mode should not write to this page.
Perms: hostarch.Read,
MaxPerms: hostarch.Read,
})
if err != nil {
return 0, err
}
id := uint64(addr)
if !mm.aioManager.newAIOContext(events, id) {
mm.MUnmap(ctx, addr, aioRingBufferSize)
return 0, linuxerr.EINVAL
}
return id, nil
}
// DestroyAIOContext destroys an asynchronous I/O context. It returns the
// destroyed context. nil if the context does not exist.
func (mm *MemoryManager) DestroyAIOContext(ctx context.Context, id uint64) *AIOContext {
if !mm.isValidAddr(ctx, id) {
return nil
}
// Only unmaps after it assured that the address is a valid aio context to
// prevent random memory from been unmapped.
//
// Note: It's possible to unmap this address and map something else into
// the same address. Then it would be unmapping memory that it doesn't own.
// This is, however, the way Linux implements AIO. Keeps the same [weird]
// semantics in case anyone relies on it.
mm.MUnmap(ctx, hostarch.Addr(id), aioRingBufferSize)
mm.aioManager.mu.Lock()
defer mm.aioManager.mu.Unlock()
return mm.destroyAIOContextLocked(ctx, id)
}
// LookupAIOContext looks up the given context. It returns false if the context
// does not exist.
func (mm *MemoryManager) LookupAIOContext(ctx context.Context, id uint64) (*AIOContext, bool) {
aioCtx, ok := mm.aioManager.lookupAIOContext(id)
if !ok {
return nil, false
}
// Protect against 'id' that is inaccessible.
if !mm.isValidAddr(ctx, id) {
return nil, false
}
return aioCtx, true
}
// isValidAddr determines if the address `id` is valid. (Linux also reads 4
// bytes from id).
func (mm *MemoryManager) isValidAddr(ctx context.Context, id uint64) bool {
var buf [4]byte
_, err := mm.CopyIn(ctx, hostarch.Addr(id), buf[:], usermem.IOOpts{})
return err == nil
}
|