1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mm
import (
"fmt"
"sync/atomic"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/limits"
"gvisor.dev/gvisor/pkg/sentry/memmap"
)
// Caller provides the droppedIDs slice to collect dropped mapping
// identities. The caller must drop the references on these identities outside a
// mm.mappingMu critical section. droppedIDs has append-like semantics, multiple
// calls to functions that drop mapping identities within a scope should reuse
// the same slice.
//
// Preconditions:
// - mm.mappingMu must be locked for writing.
// - opts must be valid as defined by the checks in MMap.
func (mm *MemoryManager) createVMALocked(ctx context.Context, opts memmap.MMapOpts, droppedIDs []memmap.MappingIdentity) (vmaIterator, hostarch.AddrRange, []memmap.MappingIdentity, error) {
if opts.MaxPerms != opts.MaxPerms.Effective() {
panic(fmt.Sprintf("Non-effective MaxPerms %s cannot be enforced", opts.MaxPerms))
}
// Find a usable range.
addr, err := mm.findAvailableLocked(opts.Length, findAvailableOpts{
Addr: opts.Addr,
Fixed: opts.Fixed,
GrowsDown: opts.GrowsDown,
Stack: opts.Stack,
Private: opts.Private,
Unmap: opts.Unmap,
Map32Bit: opts.Map32Bit,
})
if err != nil {
// Can't force without opts.Unmap and opts.Fixed.
if opts.Force && opts.Unmap && opts.Fixed {
addr = opts.Addr
} else {
return vmaIterator{}, hostarch.AddrRange{}, droppedIDs, err
}
}
ar, _ := addr.ToRange(opts.Length)
// Check against RLIMIT_AS.
newUsageAS := mm.usageAS + opts.Length
if opts.Unmap {
newUsageAS -= uint64(mm.vmas.SpanRange(ar))
}
if limitAS := limits.FromContext(ctx).Get(limits.AS).Cur; newUsageAS > limitAS {
return vmaIterator{}, hostarch.AddrRange{}, droppedIDs, linuxerr.ENOMEM
}
if opts.MLockMode != memmap.MLockNone {
// Check against RLIMIT_MEMLOCK.
if creds := auth.CredentialsFromContext(ctx); !creds.HasCapabilityIn(linux.CAP_IPC_LOCK, creds.UserNamespace.Root()) {
mlockLimit := limits.FromContext(ctx).Get(limits.MemoryLocked).Cur
if mlockLimit == 0 {
return vmaIterator{}, hostarch.AddrRange{}, droppedIDs, linuxerr.EPERM
}
newLockedAS := mm.lockedAS + opts.Length
if opts.Unmap {
newLockedAS -= mm.mlockedBytesRangeLocked(ar)
}
if newLockedAS > mlockLimit {
return vmaIterator{}, hostarch.AddrRange{}, droppedIDs, linuxerr.EAGAIN
}
}
}
// Remove overwritten mappings. This ordering is consistent with Linux:
// compare Linux's mm/mmap.c:mmap_region() => do_munmap(),
// file->f_op->mmap().
var vgap vmaGapIterator
if opts.Unmap {
vgap, droppedIDs = mm.unmapLocked(ctx, ar, droppedIDs)
} else {
vgap = mm.vmas.FindGap(ar.Start)
}
// Inform the Mappable, if any, of the new mapping.
if opts.Mappable != nil {
// The expression for writable is vma.canWriteMappableLocked(), but we
// don't yet have a vma.
if err := opts.Mappable.AddMapping(ctx, mm, ar, opts.Offset, !opts.Private && opts.MaxPerms.Write); err != nil {
return vmaIterator{}, hostarch.AddrRange{}, droppedIDs, err
}
}
// Take a reference on opts.MappingIdentity before inserting the vma since
// vma merging can drop the reference.
if opts.MappingIdentity != nil {
opts.MappingIdentity.IncRef()
}
// Finally insert the vma.
v := vma{
mappable: opts.Mappable,
off: opts.Offset,
realPerms: opts.Perms,
effectivePerms: opts.Perms.Effective(),
maxPerms: opts.MaxPerms,
private: opts.Private,
growsDown: opts.GrowsDown,
isStack: opts.Stack,
mlockMode: opts.MLockMode,
numaPolicy: linux.MPOL_DEFAULT,
id: opts.MappingIdentity,
hint: opts.Hint,
}
vseg := mm.vmas.Insert(vgap, ar, v)
mm.usageAS += opts.Length
if v.isPrivateDataLocked() {
mm.dataAS += opts.Length
}
if opts.MLockMode != memmap.MLockNone {
mm.lockedAS += opts.Length
}
return vseg, ar, droppedIDs, nil
}
type findAvailableOpts struct {
// These fields are equivalent to those in memmap.MMapOpts, except that:
//
// - Addr must be page-aligned.
//
// - Unmap allows existing guard pages in the returned range.
Addr hostarch.Addr
Fixed bool
GrowsDown bool
Stack bool
Private bool
Unmap bool
Map32Bit bool
}
// map32Start/End are the bounds to which MAP_32BIT mappings are constrained,
// and are equivalent to Linux's MAP32_BASE and MAP32_MAX respectively.
const (
map32Start = 0x40000000
map32End = 0x80000000
)
// findAvailableLocked finds an allocatable range.
//
// Preconditions: mm.mappingMu must be locked.
func (mm *MemoryManager) findAvailableLocked(length uint64, opts findAvailableOpts) (hostarch.Addr, error) {
if opts.Fixed {
opts.Map32Bit = false
}
allowedAR := mm.applicationAddrRange()
if opts.Map32Bit {
allowedAR = allowedAR.Intersect(hostarch.AddrRange{map32Start, map32End})
}
// Does the provided suggestion work?
if ar, ok := opts.Addr.ToRange(length); ok {
if allowedAR.IsSupersetOf(ar) {
if opts.Unmap {
return ar.Start, nil
}
// Check for the presence of an existing vma or guard page.
if vgap := mm.vmas.FindGap(ar.Start); vgap.Ok() && vgap.availableRange().IsSupersetOf(ar) {
return ar.Start, nil
}
}
}
// Fixed mappings accept only the requested address.
if opts.Fixed {
return 0, linuxerr.ENOMEM
}
// Prefer hugepage alignment if a hugepage or more is requested and the vma
// will actually be eligible for hugepages.
alignment := uint64(hostarch.PageSize)
if length >= hostarch.HugePageSize && opts.Private && !opts.GrowsDown && !opts.Stack {
alignment = hostarch.HugePageSize
}
if opts.Map32Bit {
return mm.findLowestAvailableLocked(length, alignment, allowedAR)
}
if mm.layout.DefaultDirection == arch.MmapBottomUp {
return mm.findLowestAvailableLocked(length, alignment, hostarch.AddrRange{mm.layout.BottomUpBase, mm.layout.MaxAddr})
}
return mm.findHighestAvailableLocked(length, alignment, hostarch.AddrRange{mm.layout.MinAddr, mm.layout.TopDownBase})
}
func (mm *MemoryManager) applicationAddrRange() hostarch.AddrRange {
return hostarch.AddrRange{mm.layout.MinAddr, mm.layout.MaxAddr}
}
// Preconditions: mm.mappingMu must be locked.
func (mm *MemoryManager) findLowestAvailableLocked(length, alignment uint64, bounds hostarch.AddrRange) (hostarch.Addr, error) {
for gap := mm.vmas.LowerBoundGap(bounds.Start); gap.Ok() && gap.Start() < bounds.End; gap = gap.NextLargeEnoughGap(hostarch.Addr(length)) {
if gr := gap.availableRange().Intersect(bounds); uint64(gr.Length()) >= length {
// Can we shift up to match the alignment?
if offset := uint64(gr.Start) % alignment; offset != 0 {
if uint64(gr.Length()) >= length+alignment-offset {
// Yes, we're aligned.
return gr.Start + hostarch.Addr(alignment-offset), nil
}
}
// Either aligned perfectly, or can't align it.
return gr.Start, nil
}
}
return 0, linuxerr.ENOMEM
}
// Preconditions: mm.mappingMu must be locked.
func (mm *MemoryManager) findHighestAvailableLocked(length, alignment uint64, bounds hostarch.AddrRange) (hostarch.Addr, error) {
for gap := mm.vmas.UpperBoundGap(bounds.End); gap.Ok() && gap.End() > bounds.Start; gap = gap.PrevLargeEnoughGap(hostarch.Addr(length)) {
if gr := gap.availableRange().Intersect(bounds); uint64(gr.Length()) >= length {
// Can we shift down to match the alignment?
start := gr.End - hostarch.Addr(length)
if offset := uint64(start) % alignment; offset != 0 {
if gr.Start <= start-hostarch.Addr(offset) {
// Yes, we're aligned.
return start - hostarch.Addr(offset), nil
}
}
// Either aligned perfectly, or can't align it.
return start, nil
}
}
return 0, linuxerr.ENOMEM
}
// Preconditions: mm.mappingMu must be locked.
func (mm *MemoryManager) mlockedBytesRangeLocked(ar hostarch.AddrRange) uint64 {
var total uint64
for vseg := mm.vmas.LowerBoundSegment(ar.Start); vseg.Ok() && vseg.Start() < ar.End; vseg = vseg.NextSegment() {
if vseg.ValuePtr().mlockMode != memmap.MLockNone {
total += uint64(vseg.Range().Intersect(ar).Length())
}
}
return total
}
// getVMAsLocked ensures that vmas exist for all addresses in ar, and support
// access of type (at, ignorePermissions). It returns:
//
// - An iterator to the vma containing ar.Start. If no vma contains ar.Start,
// the iterator is unspecified.
//
// - An iterator to the gap after the last vma containing an address in ar. If
// vmas exist for no addresses in ar, the iterator is to a gap that begins
// before ar.Start.
//
// - An error that is non-nil if vmas exist for only a subset of ar.
//
// Preconditions:
// - mm.mappingMu must be locked for reading; it may be temporarily unlocked.
// - ar.Length() != 0.
func (mm *MemoryManager) getVMAsLocked(ctx context.Context, ar hostarch.AddrRange, at hostarch.AccessType, ignorePermissions bool) (vmaIterator, vmaGapIterator, error) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
// Inline mm.vmas.LowerBoundSegment so that we have the preceding gap if
// !vbegin.Ok().
vbegin, vgap := mm.vmas.Find(ar.Start)
if !vbegin.Ok() {
vbegin = vgap.NextSegment()
// vseg.Ok() is checked before entering the following loop.
} else {
vgap = vbegin.PrevGap()
}
addr := ar.Start
vseg := vbegin
for vseg.Ok() {
// Loop invariants: vgap = vseg.PrevGap(); addr < vseg.End().
vma := vseg.ValuePtr()
if addr < vseg.Start() {
// TODO(jamieliu): Implement vma.growsDown here.
return vbegin, vgap, linuxerr.EFAULT
}
perms := vma.effectivePerms
if ignorePermissions {
perms = vma.maxPerms
}
if !perms.SupersetOf(at) {
return vbegin, vgap, linuxerr.EPERM
}
addr = vseg.End()
vgap = vseg.NextGap()
if addr >= ar.End {
return vbegin, vgap, nil
}
vseg = vgap.NextSegment()
}
// Ran out of vmas before ar.End.
return vbegin, vgap, linuxerr.EFAULT
}
// getVecVMAsLocked ensures that vmas exist for all addresses in ars, and
// support access to type of (at, ignorePermissions). It returns the subset of
// ars for which vmas exist. If this is not equal to ars, it returns a non-nil
// error explaining why.
//
// Preconditions: mm.mappingMu must be locked for reading; it may be
// temporarily unlocked.
//
// Postconditions: ars is not mutated.
func (mm *MemoryManager) getVecVMAsLocked(ctx context.Context, ars hostarch.AddrRangeSeq, at hostarch.AccessType, ignorePermissions bool) (hostarch.AddrRangeSeq, error) {
for arsit := ars; !arsit.IsEmpty(); arsit = arsit.Tail() {
ar := arsit.Head()
if ar.Length() == 0 {
continue
}
if _, vend, err := mm.getVMAsLocked(ctx, ar, at, ignorePermissions); err != nil {
return truncatedAddrRangeSeq(ars, arsit, vend.Start()), err
}
}
return ars, nil
}
// vma extension will not shrink the number of unmapped bytes between the start
// of a growsDown vma and the end of its predecessor non-growsDown vma below
// guardBytes.
//
// guardBytes is equivalent to Linux's stack_guard_gap after upstream
// 1be7107fbe18 "mm: larger stack guard gap, between vmas".
const guardBytes = 256 * hostarch.PageSize
// unmapLocked unmaps all addresses in ar and returns the resulting gap in
// mm.vmas.
//
// Caller provides the droppedIDs slice to collect dropped mapping
// identities. The caller must drop the references on these identities outside a
// mm.mappingMu critical section. droppedIDs has append-like semantics, multiple
// calls to functions that drop mapping identities within a scope should reuse
// the same slice.
//
// Preconditions:
// - mm.mappingMu must be locked for writing.
// - ar.Length() != 0.
// - ar must be page-aligned.
func (mm *MemoryManager) unmapLocked(ctx context.Context, ar hostarch.AddrRange, droppedIDs []memmap.MappingIdentity) (vmaGapIterator, []memmap.MappingIdentity) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
// AddressSpace mappings and pmas must be invalidated before
// mm.removeVMAsLocked() => memmap.Mappable.RemoveMapping().
mm.Invalidate(ar, memmap.InvalidateOpts{InvalidatePrivate: true})
return mm.removeVMAsLocked(ctx, ar, droppedIDs)
}
// removeVMAsLocked removes vmas for addresses in ar and returns the
// resulting gap in mm.vmas.
//
// Caller provides the droppedIDs slice to collect dropped mapping
// identities. The caller must drop the references on these identities outside a
// mm.mappingMu critical section. droppedIDs has append-like semantics, multiple
// calls to functions that drop mapping identities within a scope should reuse
// the same slice.
//
// Preconditions:
// - mm.mappingMu must be locked for writing.
// - ar.Length() != 0.
// - ar must be page-aligned.
func (mm *MemoryManager) removeVMAsLocked(ctx context.Context, ar hostarch.AddrRange, droppedIDs []memmap.MappingIdentity) (vmaGapIterator, []memmap.MappingIdentity) {
if checkInvariants {
if !ar.WellFormed() || ar.Length() == 0 || !ar.IsPageAligned() {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
}
vseg, vgap := mm.vmas.Find(ar.Start)
if vgap.Ok() {
vseg = vgap.NextSegment()
}
for vseg.Ok() && vseg.Start() < ar.End {
vseg = mm.vmas.Isolate(vseg, ar)
vmaAR := vseg.Range()
vma := vseg.ValuePtr()
if vma.mappable != nil {
vma.mappable.RemoveMapping(ctx, mm, vmaAR, vma.off, vma.canWriteMappableLocked())
}
if vma.id != nil {
droppedIDs = append(droppedIDs, vma.id)
}
mm.usageAS -= uint64(vmaAR.Length())
if vma.isPrivateDataLocked() {
mm.dataAS -= uint64(vmaAR.Length())
}
if vma.mlockMode != memmap.MLockNone {
mm.lockedAS -= uint64(vmaAR.Length())
}
vgap = mm.vmas.Remove(vseg)
vseg = vgap.NextSegment()
}
return vgap, droppedIDs
}
// canWriteMappableLocked returns true if it is possible for vma.mappable to be
// written to via this vma, i.e. if it is possible that
// vma.mappable.Translate(at.Write=true) may be called as a result of this vma.
// This includes via I/O with usermem.IOOpts.IgnorePermissions = true, such as
// PTRACE_POKEDATA.
//
// canWriteMappableLocked is equivalent to Linux's VM_SHARED.
//
// Preconditions: mm.mappingMu must be locked.
func (v *vma) canWriteMappableLocked() bool {
return !v.private && v.maxPerms.Write
}
// isPrivateDataLocked identify the data segments - private, writable, not stack
//
// Preconditions: mm.mappingMu must be locked.
func (v *vma) isPrivateDataLocked() bool {
return v.realPerms.Write && v.private && !v.growsDown
}
// vmaSetFunctions implements segment.Functions for vmaSet.
type vmaSetFunctions struct{}
func (vmaSetFunctions) MinKey() hostarch.Addr {
return 0
}
func (vmaSetFunctions) MaxKey() hostarch.Addr {
return ^hostarch.Addr(0)
}
func (vmaSetFunctions) ClearValue(vma *vma) {
vma.mappable = nil
vma.id = nil
vma.hint = ""
atomic.StoreUintptr(&vma.lastFault, 0)
}
func (vmaSetFunctions) Merge(ar1 hostarch.AddrRange, vma1 vma, ar2 hostarch.AddrRange, vma2 vma) (vma, bool) {
if vma1.mappable != vma2.mappable ||
(vma1.mappable != nil && vma1.off+uint64(ar1.Length()) != vma2.off) ||
vma1.realPerms != vma2.realPerms ||
vma1.maxPerms != vma2.maxPerms ||
vma1.private != vma2.private ||
vma1.growsDown != vma2.growsDown ||
vma1.isStack != vma2.isStack ||
vma1.mlockMode != vma2.mlockMode ||
vma1.numaPolicy != vma2.numaPolicy ||
vma1.numaNodemask != vma2.numaNodemask ||
vma1.dontfork != vma2.dontfork ||
vma1.id != vma2.id ||
vma1.hint != vma2.hint {
return vma{}, false
}
if vma2.id != nil {
// This DecRef() will never be the final ref, since the vma1 is
// currently holding a ref to the same mapping identity. Thus, we don't
// need to worry about whether we're in a mm.mappingMu critical section.
vma2.id.DecRef(context.Background())
}
return vma1, true
}
func (vmaSetFunctions) Split(ar hostarch.AddrRange, v vma, split hostarch.Addr) (vma, vma) {
v2 := v
if v2.mappable != nil {
v2.off += uint64(split - ar.Start)
}
if v2.id != nil {
v2.id.IncRef()
}
return v, v2
}
// Preconditions:
// - vseg.ValuePtr().mappable != nil.
// - vseg.Range().Contains(addr).
func (vseg vmaIterator) mappableOffsetAt(addr hostarch.Addr) uint64 {
if checkInvariants {
if !vseg.Ok() {
panic("terminal vma iterator")
}
if vseg.ValuePtr().mappable == nil {
panic("Mappable offset is meaningless for anonymous vma")
}
if !vseg.Range().Contains(addr) {
panic(fmt.Sprintf("addr %v out of bounds %v", addr, vseg.Range()))
}
}
vma := vseg.ValuePtr()
vstart := vseg.Start()
return vma.off + uint64(addr-vstart)
}
// Preconditions: vseg.ValuePtr().mappable != nil.
func (vseg vmaIterator) mappableRange() memmap.MappableRange {
return vseg.mappableRangeOf(vseg.Range())
}
// Preconditions:
// - vseg.ValuePtr().mappable != nil.
// - vseg.Range().IsSupersetOf(ar).
// - ar.Length() != 0.
func (vseg vmaIterator) mappableRangeOf(ar hostarch.AddrRange) memmap.MappableRange {
if checkInvariants {
if !vseg.Ok() {
panic("terminal vma iterator")
}
if vseg.ValuePtr().mappable == nil {
panic("MappableRange is meaningless for anonymous vma")
}
if !ar.WellFormed() || ar.Length() == 0 {
panic(fmt.Sprintf("invalid ar: %v", ar))
}
if !vseg.Range().IsSupersetOf(ar) {
panic(fmt.Sprintf("ar %v out of bounds %v", ar, vseg.Range()))
}
}
vma := vseg.ValuePtr()
vstart := vseg.Start()
return memmap.MappableRange{vma.off + uint64(ar.Start-vstart), vma.off + uint64(ar.End-vstart)}
}
// Preconditions:
// - vseg.ValuePtr().mappable != nil.
// - vseg.mappableRange().IsSupersetOf(mr).
// - mr.Length() != 0.
func (vseg vmaIterator) addrRangeOf(mr memmap.MappableRange) hostarch.AddrRange {
if checkInvariants {
if !vseg.Ok() {
panic("terminal vma iterator")
}
if vseg.ValuePtr().mappable == nil {
panic("MappableRange is meaningless for anonymous vma")
}
if !mr.WellFormed() || mr.Length() == 0 {
panic(fmt.Sprintf("invalid mr: %v", mr))
}
if !vseg.mappableRange().IsSupersetOf(mr) {
panic(fmt.Sprintf("mr %v out of bounds %v", mr, vseg.mappableRange()))
}
}
vma := vseg.ValuePtr()
vstart := vseg.Start()
return hostarch.AddrRange{vstart + hostarch.Addr(mr.Start-vma.off), vstart + hostarch.Addr(mr.End-vma.off)}
}
// seekNextLowerBound returns mm.vmas.LowerBoundSegment(addr), but does so by
// scanning linearly forward from vseg.
//
// Preconditions:
// - mm.mappingMu must be locked.
// - addr >= vseg.Start().
func (vseg vmaIterator) seekNextLowerBound(addr hostarch.Addr) vmaIterator {
if checkInvariants {
if !vseg.Ok() {
panic("terminal vma iterator")
}
if addr < vseg.Start() {
panic(fmt.Sprintf("can't seek forward to %#x from %#x", addr, vseg.Start()))
}
}
for vseg.Ok() && addr >= vseg.End() {
vseg = vseg.NextSegment()
}
return vseg
}
// availableRange returns the subset of vgap.Range() in which new vmas may be
// created without MMapOpts.Unmap == true.
func (vgap vmaGapIterator) availableRange() hostarch.AddrRange {
ar := vgap.Range()
next := vgap.NextSegment()
if !next.Ok() || !next.ValuePtr().growsDown {
return ar
}
// Exclude guard pages.
if ar.Length() < guardBytes {
return hostarch.AddrRange{ar.Start, ar.Start}
}
ar.End -= guardBytes
return ar
}
|