1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build amd64
// +build amd64
package kvm
import (
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/ring0"
"gvisor.dev/gvisor/pkg/sentry/arch"
)
var (
// The action for bluepillSignal is changed by sigaction().
bluepillSignal = unix.SIGSEGV
)
// bluepillArchEnter is called during bluepillEnter.
//
//go:nosplit
func bluepillArchEnter(context *arch.SignalContext64) *vCPU {
c := vCPUPtr(uintptr(context.Rax))
regs := c.CPU.Registers()
regs.R8 = context.R8
regs.R9 = context.R9
regs.R10 = context.R10
regs.R11 = context.R11
regs.R12 = context.R12
regs.R13 = context.R13
regs.R14 = context.R14
regs.R15 = context.R15
regs.Rdi = context.Rdi
regs.Rsi = context.Rsi
regs.Rbp = context.Rbp
regs.Rbx = context.Rbx
regs.Rdx = context.Rdx
regs.Rax = context.Rax
regs.Rcx = context.Rcx
regs.Rsp = context.Rsp
regs.Rip = context.Rip
regs.Eflags = context.Eflags
regs.Eflags &^= uint64(ring0.KernelFlagsClear)
regs.Eflags |= ring0.KernelFlagsSet
regs.Cs = uint64(ring0.Kcode)
regs.Ds = uint64(ring0.Udata)
regs.Es = uint64(ring0.Udata)
regs.Ss = uint64(ring0.Kdata)
return c
}
// hltSanityCheck verifies the current state to detect obvious corruption.
//
//go:nosplit
func (c *vCPU) hltSanityCheck() {
vector := c.CPU.Vector()
switch ring0.Vector(vector) {
case ring0.PageFault:
if c.CPU.FaultAddr() < ring0.KernelStartAddress {
return
}
case ring0.DoubleFault:
case ring0.GeneralProtectionFault:
case ring0.InvalidOpcode:
case ring0.MachineCheck:
case ring0.VirtualizationException:
default:
return
}
printHex([]byte("Vector = "), uint64(c.CPU.Vector()))
printHex([]byte("FaultAddr = "), uint64(c.CPU.FaultAddr()))
printHex([]byte("rip = "), uint64(c.CPU.Registers().Rip))
printHex([]byte("rsp = "), uint64(c.CPU.Registers().Rsp))
throw("fault")
}
// KernelSyscall handles kernel syscalls.
//
// +checkescape:all
//
//go:nosplit
func (c *vCPU) KernelSyscall() {
regs := c.Registers()
if regs.Rax != ^uint64(0) {
regs.Rip -= 2 // Rewind.
}
// N.B. Since KernelSyscall is called when the kernel makes a syscall,
// FS_BASE is already set for correct execution of this function.
//
// Refresher on syscall/exception handling:
// 1. When the sentry is in guest mode and makes a syscall, it goes to
// sysenter(), which saves the register state (including RIP of SYSCALL
// instruction) to vCPU.registers.
// 2. It then calls KernelSyscall, which rewinds the IP and executes
// HLT.
// 3. HLT does a VM-exit to bluepillHandler, which returns from the
// signal handler using vCPU.registers, directly to the SYSCALL
// instruction.
// 4. Later, when we want to re-use the vCPU (perhaps on a different
// host thread), we set the new thread's registers in vCPU.registers
// (as opposed to setting the KVM registers with KVM_SET_REGS).
// 5. KVM_RUN thus enters the guest with the old register state,
// immediately following the HLT instruction, returning here.
// 6. We then restore FS_BASE and the full registers from vCPU.register
// to return from sysenter() back to the desired bluepill point from
// the host.
ring0.HaltAndWriteFSBase(regs) // escapes: no, reload host segment.
}
// KernelException handles kernel exceptions.
//
// +checkescape:all
//
//go:nosplit
func (c *vCPU) KernelException(vector ring0.Vector) {
regs := c.Registers()
if vector == ring0.Vector(bounce) {
// This go-routine was saved in hr3 and resumed in gr0 with the
// userspace flags. Let's adjust flags and skip the interrupt.
regs.Eflags &^= uint64(ring0.KernelFlagsClear)
regs.Eflags |= ring0.KernelFlagsSet
return
}
// See above.
ring0.HaltAndWriteFSBase(regs) // escapes: no, reload host segment.
}
// bluepillArchExit is called during bluepillEnter.
//
//go:nosplit
func bluepillArchExit(c *vCPU, context *arch.SignalContext64) {
regs := c.CPU.Registers()
context.R8 = regs.R8
context.R9 = regs.R9
context.R10 = regs.R10
context.R11 = regs.R11
context.R12 = regs.R12
context.R13 = regs.R13
context.R14 = regs.R14
context.R15 = regs.R15
context.Rdi = regs.Rdi
context.Rsi = regs.Rsi
context.Rbp = regs.Rbp
context.Rbx = regs.Rbx
context.Rdx = regs.Rdx
context.Rax = regs.Rax
context.Rcx = regs.Rcx
context.Rsp = regs.Rsp
context.Rip = regs.Rip
context.Eflags = regs.Eflags
c.FloatingPointState().PrepForHostSigframe()
// Set the context pointer to the saved floating point state. This is
// where the guest data has been serialized, the kernel will restore
// from this new pointer value.
context.Fpstate = uint64(uintptrValue(c.FloatingPointState().BytePointer())) // escapes: no.
}
|