1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//go:build linux
// +build linux
package ptrace
import (
"fmt"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/bpf"
"gvisor.dev/gvisor/pkg/hosttid"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/seccomp"
"gvisor.dev/gvisor/pkg/sentry/arch"
)
const syscallEvent unix.Signal = 0x80
// createStub creates a fresh stub processes.
//
// Precondition: the runtime OS thread must be locked.
func createStub() (*thread, error) {
// The exact interactions of ptrace and seccomp are complex, and
// changed in recent kernel versions. Before commit 93e35efb8de45, the
// seccomp check is done before the ptrace emulation check. This means
// that any calls not matching this list will trigger the seccomp
// default action instead of notifying ptrace.
//
// After commit 93e35efb8de45, the seccomp check is done after the
// ptrace emulation check. This simplifies using SYSEMU, since seccomp
// will never run for emulation. Seccomp will only run for injected
// system calls, and thus we can use RET_KILL as our violation action.
var defaultAction linux.BPFAction
if probeSeccomp() {
log.Infof("Latest seccomp behavior found (kernel >= 4.8 likely)")
defaultAction = linux.SECCOMP_RET_KILL_THREAD
} else {
// We must rely on SYSEMU behavior; tracing with SYSEMU is broken.
log.Infof("Legacy seccomp behavior found (kernel < 4.8 likely)")
defaultAction = linux.SECCOMP_RET_ALLOW
}
// When creating the new child process, we specify SIGKILL as the
// signal to deliver when the child exits. We never expect a subprocess
// to exit; they are pooled and reused. This is done to ensure that if
// a subprocess is OOM-killed, this process (and all other stubs,
// transitively) will be killed as well. It's simply not possible to
// safely handle a single stub getting killed: the exact state of
// execution is unknown and not recoverable.
//
// In addition, we set the PTRACE_O_TRACEEXIT option to log more
// information about a stub process when it receives a fatal signal.
return attachedThread(uintptr(unix.SIGKILL)|unix.CLONE_FILES, defaultAction)
}
// attachedThread returns a new attached thread.
//
// Precondition: the runtime OS thread must be locked.
func attachedThread(flags uintptr, defaultAction linux.BPFAction) (*thread, error) {
// Create a BPF program that allows only the system calls needed by the
// stub and all its children. This is used to create child stubs
// (below), so we must include the ability to fork, but otherwise lock
// down available calls only to what is needed.
rules := []seccomp.RuleSet{}
if defaultAction != linux.SECCOMP_RET_ALLOW {
rules = append(rules, seccomp.RuleSet{
Rules: seccomp.MakeSyscallRules(map[uintptr]seccomp.SyscallRule{
unix.SYS_CLONE: seccomp.Or{
// Allow creation of new subprocesses (used by the master).
seccomp.PerArg{seccomp.EqualTo(unix.CLONE_FILES | unix.SIGKILL)},
// Allow creation of new threads within a single address space (used by address spaces).
seccomp.PerArg{
seccomp.EqualTo(
unix.CLONE_FILES |
unix.CLONE_FS |
unix.CLONE_SIGHAND |
unix.CLONE_THREAD |
unix.CLONE_PTRACE |
unix.CLONE_VM)},
},
// For the initial process creation.
unix.SYS_WAIT4: seccomp.MatchAll{},
unix.SYS_EXIT: seccomp.MatchAll{},
// For the stub prctl dance (all).
unix.SYS_PRCTL: seccomp.PerArg{seccomp.EqualTo(unix.PR_SET_PDEATHSIG), seccomp.EqualTo(unix.SIGKILL)},
unix.SYS_GETPPID: seccomp.MatchAll{},
// For the stub to stop itself (all).
unix.SYS_GETPID: seccomp.MatchAll{},
unix.SYS_KILL: seccomp.PerArg{seccomp.AnyValue{}, seccomp.EqualTo(unix.SIGSTOP)},
// Injected to support the address space operations.
unix.SYS_MMAP: seccomp.MatchAll{},
unix.SYS_MUNMAP: seccomp.MatchAll{},
}),
Action: linux.SECCOMP_RET_ALLOW,
})
}
rules = appendArchSeccompRules(rules, defaultAction)
instrs, _, err := seccomp.BuildProgram(rules, seccomp.ProgramOptions{
DefaultAction: defaultAction,
BadArchAction: defaultAction,
})
if err != nil {
return nil, err
}
return forkStub(flags, instrs)
}
// In the child, this function must not acquire any locks, because they might
// have been locked at the time of the fork. This means no rescheduling, no
// malloc calls, and no new stack segments. For the same reason compiler does
// not race instrument it.
//
//go:norace
func forkStub(flags uintptr, instrs []bpf.Instruction) (*thread, error) {
// Declare all variables up front in order to ensure that there's no
// need for allocations between beforeFork & afterFork.
var (
pid uintptr
ppid uintptr
errno unix.Errno
)
// Remember the current ppid for the pdeathsig race.
ppid, _, _ = unix.RawSyscall(unix.SYS_GETPID, 0, 0, 0)
// Among other things, beforeFork masks all signals.
beforeFork()
// Do the clone.
pid, _, errno = unix.RawSyscall6(unix.SYS_CLONE, flags, 0, 0, 0, 0, 0)
if errno != 0 {
afterFork()
return nil, errno
}
// Is this the parent?
if pid != 0 {
// Among other things, restore signal mask.
afterFork()
// Initialize the first thread.
t := &thread{
tgid: int32(pid),
tid: int32(pid),
cpu: ^uint32(0),
}
if sig := t.wait(stopped); sig != unix.SIGSTOP {
return nil, fmt.Errorf("wait failed: expected SIGSTOP, got %v", sig)
}
t.attach()
t.grabInitRegs()
return t, nil
}
// Move the stub to a new session (and thus a new process group). This
// prevents the stub from getting PTY job control signals intended only
// for the sentry process. We must call this before restoring signal
// mask.
if _, _, errno := unix.RawSyscall(unix.SYS_SETSID, 0, 0, 0); errno != 0 {
unix.RawSyscall(unix.SYS_EXIT, uintptr(errno), 0, 0)
}
// afterForkInChild resets all signals to their default dispositions
// and restores the signal mask to its pre-fork state.
afterForkInChild()
// Explicitly unmask all signals to ensure that the tracer can see
// them.
if errno := unmaskAllSignals(); errno != 0 {
unix.RawSyscall(unix.SYS_EXIT, uintptr(errno), 0, 0)
}
// Set an aggressive BPF filter for the stub and all it's children. See
// the description of the BPF program built above.
if errno := seccomp.SetFilterInChild(instrs); errno != 0 {
unix.RawSyscall(unix.SYS_EXIT, uintptr(errno), 0, 0)
}
// Enable cpuid-faulting.
enableCpuidFault()
// Call the stub; should not return.
stubCall(stubStart, ppid)
panic("unreachable")
}
// createStub creates a stub processes as a child of an existing subprocesses.
//
// Precondition: the runtime OS thread must be locked.
func (s *subprocess) createStub() (*thread, error) {
// There's no need to lock the runtime thread here, as this can only be
// called from a context that is already locked.
currentTID := int32(hosttid.Current())
t := s.syscallThreads.lookupOrCreate(currentTID, s.newThread)
// Pass the expected PPID to the child via R15.
regs := t.initRegs
initChildProcessPPID(®s, t.tgid)
// Call fork in a subprocess.
//
// The new child must set up PDEATHSIG to ensure it dies if this
// process dies. Since this process could die at any time, this cannot
// be done via instrumentation from here.
//
// Instead, we create the child untraced, which will do the PDEATHSIG
// setup and then SIGSTOP itself for our attach below.
//
// See above re: SIGKILL.
pid, err := t.syscallIgnoreInterrupt(
®s,
unix.SYS_CLONE,
arch.SyscallArgument{Value: uintptr(unix.SIGKILL | unix.CLONE_FILES)},
arch.SyscallArgument{Value: 0},
arch.SyscallArgument{Value: 0},
arch.SyscallArgument{Value: 0},
arch.SyscallArgument{Value: 0},
arch.SyscallArgument{Value: 0})
if err != nil {
return nil, fmt.Errorf("creating stub process: %v", err)
}
// Wait for child to enter group-stop, so we don't stop its
// bootstrapping work with t.attach below.
//
// We unfortunately don't have a handy part of memory to write the wait
// status. If the wait succeeds, we'll assume that it was the SIGSTOP.
// If the child actually exited, the attach below will fail.
_, err = t.syscallIgnoreInterrupt(
&t.initRegs,
unix.SYS_WAIT4,
arch.SyscallArgument{Value: uintptr(pid)},
arch.SyscallArgument{Value: 0},
arch.SyscallArgument{Value: unix.WALL | unix.WUNTRACED},
arch.SyscallArgument{Value: 0},
arch.SyscallArgument{Value: 0},
arch.SyscallArgument{Value: 0})
if err != nil {
return nil, fmt.Errorf("waiting on stub process: %v", err)
}
childT := &thread{
tgid: int32(pid),
tid: int32(pid),
cpu: ^uint32(0),
}
childT.attach()
return childT, nil
}
|