1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
// Copyright 2023 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package systrap
import (
"time"
"gvisor.dev/gvisor/pkg/atomicbitops"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/metric"
)
// This file contains all logic related to context switch latency metrics.
//
// Latency metrics are the main method by which fastpath for both stub threads
// and the sentry is enabled and disabled. We measure latency in CPU cycles.
//
// The high level overview of metric collection looks like this:
// 1a) When a context is switched from the sentry to the stub, the sentry
// records the time it was put into the context queue.
// 1b) When a stub thread picks up the context from the context queue, the stub
// thread records the time when it's about to switch back to user code.
// Getting the diff between these timestamps gives us the stub-bound latency.
//
// 2a) When a stub thread gives back a context to the sentry for handling,
// it records the time just before notifying the sentry task goroutine.
// 2b) When the task goroutine sees that it has been notified, it records the
// time.
// Getting the diff between these timestamps gives us the sentry-bound latency.
//
// 3) Both latencies are recorded at once via recordLatency(). This means
// there is a delay on getting stubBoundLatencies. In practice this should not
// matter that much due to our relatively large latency measurement periods.
//
// There is a bucket array for each latency type, where each bucket is of size
// `bucketIncrements`. Latencies are collected in time periods of length
// `recordingPeriod`, and measurements for the current period are stored
// in the `latencies` variable.
type latencyBuckets [numLatencyBuckets]atomicbitops.Uint64
type cpuTicks uint64
const (
numLatencyBuckets = 80
bucketIncrements = 2048
// minNecessaryRecordings defines the minimum amount of recordings we
// want to see in latencyBuckets in order to get a reasonable median.
minNecessaryRecordings = 5
)
// neverEnableFastPath is used for completely disabling the fast path.
// It is set once so doesn't need any synchronizations.
var neverEnableFastPath bool
// latencyRecorder is used to collect latency metrics.
type latencyRecorder struct {
stubBound latencyBuckets
sentryBound latencyBuckets
}
// latencies stores the latency counts for the current measurement period.
var latencies latencyRecorder
// record increments the correct bucket assigned to the given latency l.
//
//go:nosplit
func (b *latencyBuckets) record(l cpuTicks) {
bucket := l / bucketIncrements
if bucket >= numLatencyBuckets {
bucket = numLatencyBuckets - 1
}
b[bucket].Add(1)
}
// getMedian returns a latency measure in the range of
// [bucketIncrements, numLatencyBuckets * bucketIncrements], or 0 if unable to
// find a median in the latencyBuckets.
func (b *latencyBuckets) getMedian() cpuTicks {
i := 0
j := numLatencyBuckets - 1
var totalForwards, totalBackwards uint64
for i <= j {
if totalForwards < totalBackwards {
totalForwards += b[i].Load()
i++
} else {
totalBackwards += b[j].Load()
j--
}
}
if totalForwards+totalBackwards < minNecessaryRecordings {
return 0
}
return cpuTicks(max(uint64(i), 1) * bucketIncrements)
}
// merge combines two latencyBuckets instances.
func (b *latencyBuckets) merge(other *latencyBuckets) {
for i := 0; i < numLatencyBuckets; i++ {
b[i].Add(other[i].Load())
}
}
// reset zeroes all buckets.
func (b *latencyBuckets) reset() {
for i := 0; i < numLatencyBuckets; i++ {
b[i].Store(0)
}
}
// recordLatency records the latency of both the sentry->stub and the
// stub->sentry context switches.
// For the stub->sentry context switch, the final timestamp is taken by this
// function.
// Preconditions:
// - ctx.isAcked() is true.
//
//go:nosplit
func (sc *sharedContext) recordLatency() {
// Record stub->sentry latency.
sentryBoundLatency := sc.getStateChangedTimeDiff()
if sentryBoundLatency != 0 {
latencies.sentryBound.record(sentryBoundLatency)
}
// Record sentry->stub latency.
stubBoundLatency := sc.getAckedTimeDiff()
if stubBoundLatency != 0 {
latencies.stubBound.record(stubBoundLatency)
}
updateDebugMetrics(stubBoundLatency, sentryBoundLatency)
}
// When a measurement period ends, the latencies are used to determine the fast
// path state. Fastpath is independently enabled for both the sentry and stub
// threads, and is modeled as the following state machine:
//
// +----------StubFPOff,SentryFPOff-------+
// | ^ ^ |
// V | | V
// +-->StubFPOn,SentryFPOff StubFPOff,SentryFPOn<--+
// | | ^ | ^ |
// | V | V | |
// | StubFPOn,SentryFPOn StubFPOn,SentryFPOn |
// | LastEnabledSentryFP LastEnabledStubFP |
// | | | |
// | | | |
// | +---------> StubFPOn,SentryFPOn <-------+ |
// | | | |
// |______________________________| |___________________________|
//
// The default state is to have both stub and sentry fastpath OFF.
// A state transition to enable one fastpath is done when
// fpState.(stub|sentry)FPBackoff reaches 0. (stub|sentry)FPBackoff is
// decremented every recording period that the corresponding fastpath is
// disabled.
// A state transition to disable one fastpath is decided through the predicates
// shouldDisableStubFP or shouldDisableSentryFP, and activated with
// disableStubFP or disableSentryFP.
//
// Why have 3 states for both FPs being ON? The logic behind that is to do with
// the fact that fastpaths are interdependent. Enabling one fastpath can have
// negative effects on the latency metrics of the other in the event that there
// are not enough CPUs to run the fastpath. So it's very possible that the system
// finds itself in a state where it's beneficial to run one fastpath but not the
// other based on the workload it's doing. For this case, we need to remember
// what the last stable state was to return to, because the metrics will likely
// be bad enough for both sides to be eligible for being disabled.
//
// Once the system establishes that having both the stub and sentry fastpath ON
// is acceptable, it does prioritize disabling stub fastpath over disabling
// sentry fastpath, because the sentry fastpath at most takes one thread to spin.
const (
recordingPeriod = 400 * time.Microsecond
fastPathBackoffMin = 2
maxRecentFPFailures = 9
numConsecutiveFailsToDisableFP = 2
)
// fastPathState is used to keep track of long term metrics that span beyond
// one measurement period.
type fastPathState struct {
// stubBoundBaselineLatency and sentryBoundBaselineLatency record all
// latency measures recorded during periods when their respective
// fastpath was OFF.
stubBoundBaselineLatency latencyBuckets
sentryBoundBaselineLatency latencyBuckets
// stubFPBackoff and sentryFPBackoff are the periods remaining until
// the system attempts to use the fastpath again.
stubFPBackoff int
sentryFPBackoff int
// stubFPRecentFailures and sentryFPRecentFailures are counters in the
// range [0, maxRecentFPFailures] that are incremented by
// disable(Stub|Sentry)FP and decremented by (stub|sentry)FPSuccess.
// They are used to set the backoffs.
stubFPRecentFailures int
sentryFPRecentFailures int
consecutiveStubFPFailures int
consecutiveSentryFPFailures int
_ [hostarch.CacheLineSize]byte
// stubFastPathEnabled is a global flag referenced in other parts of
// systrap to determine if the stub fast path is enabled or not.
stubFastPathEnabled atomicbitops.Bool
_ [hostarch.CacheLineSize]byte
// sentryFastPathEnabled is a global flag referenced in other parts of
// systrap to determine if the sentry fastpath is enabled or not.
sentryFastPathEnabled atomicbitops.Bool
_ [hostarch.CacheLineSize]byte
// nrMaxAwakeStubThreads is the maximum number of awake stub threads over
// all subprocesses at the this moment.
nrMaxAwakeStubThreads atomicbitops.Uint32
// usedStubFastPath and usedSentryFastPath are reset every recording
// period, and are populated in case the system actually used the
// fastpath (i.e. stub or dispatcher spun for some time without work).
_ [hostarch.CacheLineSize]byte
usedStubFastPath atomicbitops.Bool
_ [hostarch.CacheLineSize]byte
usedSentryFastPath atomicbitops.Bool
_ [hostarch.CacheLineSize]byte
// curState is the current fastpath state function, which is called at
// the end of every recording period.
curState func(*fastPathState)
}
var (
fastpath = fastPathState{
stubFPBackoff: fastPathBackoffMin,
sentryFPBackoff: fastPathBackoffMin,
curState: sentryOffStubOff,
}
// fastPathContextLimit is the maximum number of contexts after which the fast
// path in stub threads is disabled. Its value can be higher than the number of
// CPU-s, because the Sentry is running with higher priority than stub threads,
// deepSleepTimeout is much shorter than the Linux scheduler timeslice, so the
// only thing that matters here is whether the Sentry handles syscall faster
// than the overhead of scheduling another stub thread.
//
// It is set after maxSysmsgThreads is initialized.
fastPathContextLimit = uint32(0)
)
// controlFastPath is used to spawn a goroutine when creating the Systrap
// platform.
func controlFastPath() {
fastPathContextLimit = uint32(maxSysmsgThreads * 2)
for {
time.Sleep(recordingPeriod)
fastpath.curState(&fastpath)
// Reset FP trackers.
fastpath.usedStubFastPath.Store(false)
fastpath.usedSentryFastPath.Store(false)
}
}
// getBackoff returns the number of recording periods that fastpath should remain
// disabled for, based on the num of recentFailures.
func getBackoff(recentFailures int) int {
return 1 << recentFailures
}
//go:nosplit
func (s *fastPathState) sentryFastPath() bool {
return s.sentryFastPathEnabled.Load()
}
//go:nosplit
func (s *fastPathState) stubFastPath() bool {
return s.stubFastPathEnabled.Load() && (s.nrMaxAwakeStubThreads.Load() <= fastPathContextLimit)
}
// enableSentryFP is a wrapper to unconditionally enable sentry FP and increment
// a debug metric.
func (s *fastPathState) enableSentryFP() {
s.sentryFastPathEnabled.Store(true)
numTimesSentryFastPathEnabled.Increment()
}
// disableSentryFP returns true if the sentry fastpath was able to be disabled.
//
// It takes two calls to disableSentryFP without any calls to sentryFPSuccess in
// between to disable the sentry fastpath. This is done in order to mitigate the
// effects of outlier measures due to rdtsc inaccuracies.
func (s *fastPathState) disableSentryFP() bool {
s.consecutiveSentryFPFailures++
if s.consecutiveSentryFPFailures < numConsecutiveFailsToDisableFP {
return false
}
s.consecutiveSentryFPFailures = 0
s.sentryFastPathEnabled.Store(false)
numTimesSentryFastPathDisabled.Increment()
s.sentryFPBackoff = getBackoff(s.sentryFPRecentFailures)
s.sentryFPRecentFailures = min(maxRecentFPFailures, s.sentryFPRecentFailures+1)
return true
}
// enableStubFP is a wrapper to unconditionally enable stub FP and increment
// a debug metric.
func (s *fastPathState) enableStubFP() {
s.stubFastPathEnabled.Store(true)
numTimesStubFastPathEnabled.Increment()
}
// disableStubFP returns true if the stub fastpath was able to be disabled.
//
// It takes two calls to disableStubFP without any calls to stubFPSuccess in
// between to disable the stub fastpath. This is done in order to mitigate the
// effects of outlier measures due to rdtsc inaccuracies.
func (s *fastPathState) disableStubFP() bool {
s.consecutiveStubFPFailures++
if s.consecutiveStubFPFailures < numConsecutiveFailsToDisableFP {
return false
}
s.consecutiveStubFPFailures = 0
s.stubFastPathEnabled.Store(false)
numTimesStubFastPathDisabled.Increment()
s.stubFPBackoff = getBackoff(s.stubFPRecentFailures)
s.stubFPRecentFailures = min(maxRecentFPFailures, s.stubFPRecentFailures+1)
return true
}
func (s *fastPathState) sentryFPSuccess() {
s.sentryFPRecentFailures = max(0, s.sentryFPRecentFailures-1)
s.consecutiveSentryFPFailures = 0
}
func (s *fastPathState) stubFPSuccess() {
s.stubFPRecentFailures = max(0, s.stubFPRecentFailures-1)
s.consecutiveStubFPFailures = 0
}
// shouldDisableSentryFP returns true if the metrics indicate sentry fastpath
// should be disabled.
func (s *fastPathState) shouldDisableSentryFP(stubMedian, sentryMedian cpuTicks) bool {
if !s.usedSentryFastPath.Load() {
return false
}
stubBaseline := s.stubBoundBaselineLatency.getMedian()
sentryBaseline := s.sentryBoundBaselineLatency.getMedian()
if sentryMedian < sentryBaseline {
// Assume the number of productive stubs is the core count on the
// system, not counting the 1 core taken by the dispatcher for
// the fast path.
n := cpuTicks(maxSysmsgThreads - 1)
// If the sentry fastpath is causing the stub latency to be
// higher than normal, the point at which it's considered to be
// too high is when the time saved via the sentry fastpath is
// less than the time lost via higher stub latency (with some
// error margin). Assume that all possible stub threads are
// active for this comparison.
diff := (sentryBaseline - sentryMedian) * n
errorMargin := stubBaseline / 8
return (stubMedian > stubBaseline) && (stubMedian-stubBaseline) > (diff+errorMargin)
}
// Running the fastpath resulted in higher sentry latency than baseline?
// This does not happen often, but it is an indication that the fastpath
// wasn't used to full effect: for example the dispatcher kept changing,
// and that there was not enough CPU to place a new dispatcher fast
// enough.
//
// If there isn't enough CPU we will most likely see large stub latency
// regressions, and should disable the fastpath.
return stubMedian > (stubBaseline + stubBaseline/2)
}
// shouldDisableStubFP returns true if the metrics indicate stub fastpath should
// be disabled.
func (s *fastPathState) shouldDisableStubFP(stubMedian, sentryMedian cpuTicks) bool {
if !s.usedStubFastPath.Load() {
return false
}
stubBaseline := s.stubBoundBaselineLatency.getMedian()
sentryBaseline := s.sentryBoundBaselineLatency.getMedian()
if stubMedian < stubBaseline {
// If the stub fastpath is causing the sentry latency to be
// higher than normal, the point at which it's considered to be
// too high is when the time saved via the stub fastpath is
// less than the time lost via higher sentry latency (with some
// error margin). Unlike the stub latency, the sentry latency is
// largely dependent on one thread (the dispatcher).
diff := stubBaseline - stubMedian
errorMargin := sentryBaseline / 8
return (sentryMedian > sentryBaseline) && (sentryMedian-sentryBaseline) > (diff+errorMargin)
}
// Running the fastpath resulted in higher stub latency than baseline?
// This is either an indication that there isn't enough CPU to schedule
// stub threads to run the fastpath, or the user workload has changed to
// be such that it returns less often to the sentry.
//
// If there isn't enough CPU we will most likely see large sentry latency
// regressions, and should disable the fastpath.
return sentryMedian > (sentryBaseline + sentryBaseline/2)
}
// The following functions are used for state transitions in the sentry/stub
// fastpath state machine described above.
func sentryOffStubOff(s *fastPathState) {
if neverEnableFastPath {
return
}
periodStubBoundMedian := latencies.stubBound.getMedian()
s.stubBoundBaselineLatency.merge(&latencies.stubBound)
latencies.stubBound.reset()
if periodStubBoundMedian != 0 {
s.stubFPBackoff = max(s.stubFPBackoff-1, 0)
}
periodSentryBoundMedian := latencies.sentryBound.getMedian()
s.sentryBoundBaselineLatency.merge(&latencies.sentryBound)
latencies.sentryBound.reset()
if periodSentryBoundMedian != 0 {
s.sentryFPBackoff = max(s.sentryFPBackoff-1, 0)
}
if s.sentryFPBackoff == 0 {
s.enableSentryFP()
s.curState = sentryOnStubOff
} else if s.stubFPBackoff == 0 {
s.enableStubFP()
s.curState = sentryOffStubOn
}
}
func sentryOnStubOff(s *fastPathState) {
periodStubBoundMedian := latencies.stubBound.getMedian()
periodSentryBoundMedian := latencies.sentryBound.getMedian()
if periodStubBoundMedian == 0 || periodSentryBoundMedian == 0 {
return
}
if s.shouldDisableSentryFP(periodStubBoundMedian, periodSentryBoundMedian) {
if s.disableSentryFP() {
s.curState = sentryOffStubOff
}
} else {
s.sentryFPSuccess()
// If we are going to keep sentry FP on that means stub latency
// was fine; update the baseline.
s.stubBoundBaselineLatency.merge(&latencies.stubBound)
latencies.stubBound.reset()
s.stubFPBackoff = max(s.stubFPBackoff-1, 0)
if s.stubFPBackoff == 0 {
s.enableStubFP()
s.curState = sentryOnStubOnLastEnabledStub
}
}
latencies.sentryBound.reset()
}
func sentryOffStubOn(s *fastPathState) {
periodStubBoundMedian := latencies.stubBound.getMedian()
periodSentryBoundMedian := latencies.sentryBound.getMedian()
if periodStubBoundMedian == 0 || periodSentryBoundMedian == 0 {
return
}
if s.shouldDisableStubFP(periodStubBoundMedian, periodSentryBoundMedian) {
if s.disableStubFP() {
s.curState = sentryOffStubOff
}
} else {
s.stubFPSuccess()
s.sentryBoundBaselineLatency.merge(&latencies.sentryBound)
latencies.sentryBound.reset()
s.sentryFPBackoff = max(s.sentryFPBackoff-1, 0)
if s.sentryFPBackoff == 0 {
s.enableSentryFP()
s.curState = sentryOnStubOnLastEnabledSentry
}
}
latencies.stubBound.reset()
}
func sentryOnStubOnLastEnabledSentry(s *fastPathState) {
periodStubBoundMedian := latencies.stubBound.getMedian()
periodSentryBoundMedian := latencies.sentryBound.getMedian()
if periodStubBoundMedian == 0 || periodSentryBoundMedian == 0 {
return
}
latencies.stubBound.reset()
latencies.sentryBound.reset()
if s.shouldDisableSentryFP(periodStubBoundMedian, periodSentryBoundMedian) {
if s.disableSentryFP() {
s.curState = sentryOffStubOn
}
} else {
s.curState = sentryOnStubOn
s.sentryFPSuccess()
s.stubFPSuccess()
}
}
func sentryOnStubOnLastEnabledStub(s *fastPathState) {
periodStubBoundMedian := latencies.stubBound.getMedian()
periodSentryBoundMedian := latencies.sentryBound.getMedian()
if periodStubBoundMedian == 0 || periodSentryBoundMedian == 0 {
return
}
latencies.stubBound.reset()
latencies.sentryBound.reset()
if s.shouldDisableStubFP(periodStubBoundMedian, periodSentryBoundMedian) {
if s.disableStubFP() {
s.curState = sentryOnStubOff
}
} else {
s.curState = sentryOnStubOn
s.sentryFPSuccess()
s.stubFPSuccess()
}
}
func sentryOnStubOn(s *fastPathState) {
periodStubBoundMedian := latencies.stubBound.getMedian()
periodSentryBoundMedian := latencies.sentryBound.getMedian()
if periodStubBoundMedian == 0 || periodSentryBoundMedian == 0 {
return
}
latencies.stubBound.reset()
latencies.sentryBound.reset()
// Prioritize disabling stub fastpath over sentry fastpath, since sentry
// only spins with one thread.
if s.shouldDisableStubFP(periodStubBoundMedian, periodSentryBoundMedian) {
if s.disableStubFP() {
s.curState = sentryOnStubOff
}
} else if s.shouldDisableSentryFP(latencies.stubBound.getMedian(), latencies.sentryBound.getMedian()) {
if s.disableSentryFP() {
s.curState = sentryOffStubOn
}
} else {
s.sentryFPSuccess()
s.stubFPSuccess()
}
}
// Profiling metrics intended for debugging purposes.
var (
numTimesSentryFastPathDisabled = SystrapProfiling.MustCreateNewUint64Metric("/systrap/numTimesSentryFastPathDisabled", metric.Uint64Metadata{Cumulative: true})
numTimesSentryFastPathEnabled = SystrapProfiling.MustCreateNewUint64Metric("/systrap/numTimesSentryFastPathEnabled", metric.Uint64Metadata{Cumulative: true})
numTimesStubFastPathDisabled = SystrapProfiling.MustCreateNewUint64Metric("/systrap/numTimesStubFastPathDisabled", metric.Uint64Metadata{Cumulative: true})
numTimesStubFastPathEnabled = SystrapProfiling.MustCreateNewUint64Metric("/systrap/numTimesStubFastPathEnabled", metric.Uint64Metadata{Cumulative: true})
numTimesStubKicked = SystrapProfiling.MustCreateNewUint64Metric("/systrap/numTimesStubKicked", metric.Uint64Metadata{Cumulative: true})
stubLatWithin1kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/stubLatWithin1kUS", metric.Uint64Metadata{Cumulative: true})
stubLatWithin5kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/stubLatWithin5kUS", metric.Uint64Metadata{Cumulative: true})
stubLatWithin10kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/stubLatWithin10kUS", metric.Uint64Metadata{Cumulative: true})
stubLatWithin20kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/stubLatWithin20kUS", metric.Uint64Metadata{Cumulative: true})
stubLatWithin40kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/stubLatWithin40kUS", metric.Uint64Metadata{Cumulative: true})
stubLatGreater40kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/stubLatGreater40kUS", metric.Uint64Metadata{Cumulative: true})
sentryLatWithin1kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/sentryLatWithin1kUS", metric.Uint64Metadata{Cumulative: true})
sentryLatWithin5kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/sentryLatWithin5kUS", metric.Uint64Metadata{Cumulative: true})
sentryLatWithin10kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/sentryLatWithin10kUS", metric.Uint64Metadata{Cumulative: true})
sentryLatWithin20kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/sentryLatWithin20kUS", metric.Uint64Metadata{Cumulative: true})
sentryLatWithin40kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/sentryLatWithin40kUS", metric.Uint64Metadata{Cumulative: true})
sentryLatGreater40kUS = SystrapProfiling.MustCreateNewUint64Metric("/systrap/sentryLatGreater40kUS", metric.Uint64Metadata{Cumulative: true})
)
|