1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
// Copyright 2023 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package systrap
import (
"fmt"
"strconv"
"sync"
"sync/atomic"
"time"
"golang.org/x/sys/unix"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sentry/platform"
"gvisor.dev/gvisor/pkg/sentry/platform/systrap/sysmsg"
"gvisor.dev/gvisor/pkg/syncevent"
)
const (
ackReset uint64 = 0
stateChangedReset uint64 = 0
)
// sharedContext is an abstraction for interactions that the sentry has to
// perform with memory shared between it and the stub threads used for contexts.
//
// Any access to shared memory should most likely have a getter/setter through
// this struct. This is due to the following reasons:
// - The memory needs to be read or modified atomically because there is no
// (trusted) synchronization between the sentry and the stub processes.
// - Data read from shared memory may require validation before it can be used.
type sharedContext struct {
contextEntry
// subprocess is the subprocess that this sharedContext instance belongs to.
subprocess *subprocess
// contextID is the ID corresponding to the sysmsg.ThreadContext memory slot
// that is used for this sharedContext.
contextID uint32
// shared is the handle to the shared memory that the sentry task go-routine
// reads from and writes to.
// NOTE: Using this handle directly without a getter from this function should
// most likely be avoided due to concerns listed above.
shared *sysmsg.ThreadContext
// sync is used by the context go-routine to wait for events from the
// dispatcher.
sync syncevent.Waiter
startWaitingTS int64
kicked bool
// The task associated with the context fell asleep.
sleeping bool
}
// String returns the ID of this shared context.
func (sc *sharedContext) String() string {
return strconv.Itoa(int(sc.contextID))
}
const (
// sharedContextReady indicates that a context has new events.
sharedContextReady = syncevent.Set(1 << iota)
// sharedContextKicked indicates that a new stub thread should be woken up.
sharedContextKicked
// sharedContextSlowPath indicates that a context has to be waited for in the
// slow path.
sharedContextSlowPath
// sharedContextDispatch indicates that a context go-routine has to start the wait loop.
sharedContextDispatch
)
func (s *subprocess) getSharedContext() (*sharedContext, error) {
s.mu.Lock()
defer s.mu.Unlock()
id, ok := s.threadContextPool.Get()
if !ok {
return nil, fmt.Errorf("subprocess has too many active tasks (%d); failed to create a new one", maxGuestContexts)
}
s.IncRef()
sc := sharedContext{
subprocess: s,
contextID: uint32(id),
shared: s.getThreadContextFromID(id),
}
sc.shared.Init(invalidThreadID)
sc.sync.Init()
sc.sleeping = true
return &sc, nil
}
func (sc *sharedContext) release() {
if sc == nil {
return
}
if !sc.sleeping {
sc.subprocess.decAwakeContexts()
}
sc.subprocess.threadContextPool.Put(uint64(sc.contextID))
sc.subprocess.DecRef(sc.subprocess.release)
}
func (sc *sharedContext) isActiveInSubprocess(s *subprocess) bool {
if sc == nil {
return false
}
return sc.subprocess == s
}
// NotifyInterrupt implements interrupt.Receiver.NotifyInterrupt.
func (sc *sharedContext) NotifyInterrupt() {
// If this context is not being worked on right now we need to mark it as
// interrupted so the next executor does not start working on it.
atomic.StoreUint32(&sc.shared.Interrupt, 1)
if sc.threadID() == invalidThreadID {
return
}
sc.subprocess.sysmsgThreadsMu.Lock()
defer sc.subprocess.sysmsgThreadsMu.Unlock()
threadID := atomic.LoadUint32(&sc.shared.ThreadID)
sysmsgThread, ok := sc.subprocess.sysmsgThreads[threadID]
if !ok {
// This is either an invalidThreadID or another garbage value; either way we
// don't know which thread to interrupt; best we can do is mark the context.
return
}
t := sysmsgThread.thread
if _, _, e := unix.RawSyscall(unix.SYS_TGKILL, uintptr(t.tgid), uintptr(t.tid), uintptr(platform.SignalInterrupt)); e != 0 {
panic(fmt.Sprintf("failed to interrupt the child process %d: %v", t.tid, e))
}
}
func (sc *sharedContext) state() sysmsg.ContextState {
return sc.shared.State.Get()
}
func (sc *sharedContext) setState(state sysmsg.ContextState) {
sc.shared.State.Set(state)
}
func (sc *sharedContext) setInterrupt() {
atomic.StoreUint32(&sc.shared.Interrupt, 1)
}
func (sc *sharedContext) clearInterrupt() {
atomic.StoreUint32(&sc.shared.Interrupt, 0)
}
func (sc *sharedContext) setFPStateChanged() {
atomic.StoreUint64(&sc.shared.FPStateChanged, 1)
}
func (sc *sharedContext) threadID() uint32 {
return atomic.LoadUint32(&sc.shared.ThreadID)
}
// EnableSentryFastPath indicates that the polling mode is enabled for the
// Sentry. It has to be called before putting the context into the context queue.
func (sc *sharedContext) enableSentryFastPath() {
atomic.StoreUint32(&sc.shared.SentryFastPath, 1)
}
// DisableSentryFastPath indicates that the polling mode for the sentry is
// disabled for the Sentry.
func (sc *sharedContext) disableSentryFastPath() {
atomic.StoreUint32(&sc.shared.SentryFastPath, 0)
}
func (sc *sharedContext) isAcked() bool {
return atomic.LoadUint64(&sc.shared.AckedTime) != ackReset
}
// getAckedTimeDiff returns the time difference between when this context was
// put into the context queue, and when this context was acked by a stub thread.
// Precondition: must be called after isAcked() == true.
//
//go:nosplit
func (sc *sharedContext) getAckedTimeDiff() cpuTicks {
ackedAt := atomic.LoadUint64(&sc.shared.AckedTime)
if ackedAt < uint64(sc.startWaitingTS) {
log.Infof("likely memory tampering detected: found a condition where ackedAt (%d) < startWaitingTS (%d)", ackedAt, uint64(sc.startWaitingTS))
return 0
}
return cpuTicks(ackedAt - uint64(sc.startWaitingTS))
}
// getStateChangedTimeDiff returns the time difference between the time the
// context state got changed by a stub thread, and now.
//
//go:nosplit
func (sc *sharedContext) getStateChangedTimeDiff() cpuTicks {
changedAt := atomic.LoadUint64(&sc.shared.StateChangedTime)
now := uint64(cputicks())
if now < changedAt {
log.Infof("likely memory tampering detected: found a condition where now (%d) < changedAt (%d)", now, changedAt)
return 0
}
return cpuTicks(now - changedAt)
}
func (sc *sharedContext) resetLatencyMeasures() {
atomic.StoreUint64(&sc.shared.AckedTime, ackReset)
atomic.StoreUint64(&sc.shared.StateChangedTime, stateChangedReset)
}
const (
contextPreemptTimeoutNsec = 10 * 1000 * 1000 // 10ms
contextCheckupTimeoutSec = 5
stuckContextTimeout = 30 * time.Second
)
var errDeadSubprocess = fmt.Errorf("subprocess died")
func (sc *sharedContext) sleepOnState(state sysmsg.ContextState) error {
timeout := unix.Timespec{
Sec: 0,
Nsec: contextPreemptTimeoutNsec,
}
sentInterruptOnce := false
deadline := time.Now().Add(stuckContextTimeout)
for sc.state() == state {
errno := sc.shared.SleepOnState(state, &timeout)
if errno == 0 {
continue
}
if errno != unix.ETIMEDOUT {
panic(fmt.Sprintf("error waiting for state: %v", errno))
}
if !sc.subprocess.alive() {
return errDeadSubprocess
}
if time.Now().After(deadline) {
log.Warningf("Systrap task goroutine has been waiting on ThreadContext.State futex too long. ThreadContext: %v", sc)
}
if sentInterruptOnce {
log.Warningf("The context is still running: %v", sc)
continue
}
if !sc.isAcked() || sc.subprocess.contextQueue.isEmpty() {
continue
}
sc.NotifyInterrupt()
sentInterruptOnce = true
timeout.Sec = contextCheckupTimeoutSec
timeout.Nsec = 0
}
return nil
}
type fastPathDispatcher struct {
// list is used only from the loop method and so it isn't protected by
// any lock.
list contextList
mu sync.Mutex
// nr is the number of contexts in the queue.
// +checklocks:mu
nr int
// entrants contains new contexts that haven't been added to `list` yet.
// +checklocks:mu
entrants contextList
}
var dispatcher fastPathDispatcher
const (
// deepSleepTimeout is the timeout after which both stub threads and the
// dispatcher consider whether to stop polling. They need to have elapsed
// this timeout twice in a row in order to stop, so the actual timeout
// can be considered to be (deepSleepTimeout*2). Falling asleep after two
// shorter timeouts instead of one long timeout is done in order to
// mitigate the effects of rdtsc inaccuracies.
//
// The value is 20µs for 2GHz CPU. 40µs matches the sentry<->stub
// round trip in the pure deep sleep case.
deepSleepTimeout = uint64(40000)
handshakeTimeout = uint64(1000)
)
// loop is processing contexts in the queue. Only one instance of it can be
// running, because it has exclusive access to the list.
//
// target is the context associated with the current go-routine.
func (q *fastPathDispatcher) loop(target *sharedContext) {
done := false
processed := 0
firstTimeout := false
slowPath := false
startedSpinning := cputicks()
for {
var ctx, next *sharedContext
q.mu.Lock()
q.nr -= processed
// Add new contexts to the list.
q.list.PushBackList(&q.entrants)
ctx = q.list.Front()
q.mu.Unlock()
if done {
if ctx != nil {
// Wake up the next go-routine to run the loop.
ctx.sync.Receiver().Notify(sharedContextDispatch)
}
break
}
slowPath = !fastpath.sentryFastPath() || slowPath
processed = 0
now := cputicks()
for ctx = q.list.Front(); ctx != nil; ctx = next {
next = ctx.Next()
event := sharedContextReady
if ctx.state() == sysmsg.ContextStateNone {
if slowPath {
event = sharedContextSlowPath
} else if !ctx.kicked && uint64(now-ctx.startWaitingTS) > handshakeTimeout {
if ctx.isAcked() {
ctx.kicked = true
continue
}
event = sharedContextKicked
} else {
continue
}
}
processed++
q.list.Remove(ctx)
if ctx == target {
done = true
}
ctx.sync.Receiver().Notify(event)
}
if processed != 0 {
startedSpinning = now
firstTimeout = false
} else {
fastpath.usedSentryFastPath.Store(true)
}
// If dispatcher has been spinning for too long, send this
// dispatcher to sleep.
if uint64(now-startedSpinning) > deepSleepTimeout {
slowPath = firstTimeout
firstTimeout = true
}
yield()
}
}
func (q *fastPathDispatcher) waitFor(ctx *sharedContext) syncevent.Set {
events := syncevent.NoEvents
q.mu.Lock()
q.entrants.PushBack(ctx)
q.nr++
if q.nr == 1 {
events = sharedContextDispatch
}
q.mu.Unlock()
for {
if events&sharedContextDispatch != 0 {
ctx.sync.Ack(sharedContextDispatch)
q.loop(ctx)
}
events = ctx.sync.WaitAndAckAll()
if events&sharedContextDispatch == 0 {
break
}
}
return events
}
|