File: sysmsg_lib.c

package info (click to toggle)
golang-gvisor-gvisor 0.0~20240729.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 21,276 kB
  • sloc: asm: 3,361; ansic: 1,197; cpp: 348; makefile: 92; python: 89; sh: 83
file content (418 lines) | stat: -rw-r--r-- 14,039 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// Copyright 2022 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#define _GNU_SOURCE
#include <errno.h>
#include <linux/futex.h>
#include <linux/unistd.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>

#include "atomic.h"
#include "sysmsg.h"

// __export_deep_sleep_timeout is the timeout after which the stub thread stops
// polling and fall asleep.
uint64_t __export_deep_sleep_timeout;

// LINT.IfChange
#define MAX_GUEST_CONTEXTS (4095)
#define MAX_CONTEXT_QUEUE_ENTRIES (MAX_GUEST_CONTEXTS + 1)
#define INVALID_CONTEXT_ID 0xfefefefe
#define INVALID_THREAD_ID 0xfefefefe

// Each element of a context_queue ring buffer is a sum of its index shifted by
// CQ_INDEX_SHIFT and context_id.
#define CQ_INDEX_SHIFT 32
#define CQ_CONTEXT_MASK ((1UL << CQ_INDEX_SHIFT) - 1)

// See systrap/context_queue.go
struct context_queue {
  uint32_t start;
  uint32_t end;
  uint32_t num_active_threads;
  uint32_t num_spinning_threads;
  uint32_t num_threads_to_wakeup;
  uint32_t num_active_contexts;
  uint32_t num_awake_contexts;
  uint32_t fast_path_disabled;
  uint32_t used_fast_path;
  uint64_t ringbuffer[MAX_CONTEXT_QUEUE_ENTRIES];
};

struct context_queue *__export_context_queue_addr;

// LINT.ThenChange(../context_queue.go)

uint32_t is_empty(struct context_queue *queue) {
  return atomic_load(&queue->start) == atomic_load(&queue->end);
}

int32_t queued_contexts(struct context_queue *queue) {
  return (atomic_load(&queue->end) + MAX_CONTEXT_QUEUE_ENTRIES -
          atomic_load(&queue->start)) %
         MAX_CONTEXT_QUEUE_ENTRIES;
}

#if defined(__x86_64__)
static __inline__ unsigned long rdtsc(void) {
  unsigned h, l;
  __asm__ __volatile__("rdtsc" : "=a"(l), "=d"(h));
  return ((unsigned long)l) | (((unsigned long)h) << 32);
}

static __inline__ void spinloop(void) { asm("pause"); }
#elif defined(__aarch64__)
static __inline__ unsigned long rdtsc(void) {
  long val;
  asm volatile("mrs %0, cntvct_el0" : "=r"(val));
  return val;
}

static __inline__ void spinloop(void) { asm volatile("yield" : : : "memory"); }
#endif

void *__export_context_region;

static struct thread_context *thread_context_addr(uint32_t tcid) {
  return (struct thread_context *)(__export_context_region +
                                   tcid *
                                       ALLOCATED_SIZEOF_THREAD_CONTEXT_STRUCT);
}

void memcpy(uint8_t *dest, uint8_t *src, size_t n) {
  for (size_t i = 0; i < n; i += 1) {
    dest[i] = src[i];
  }
}

// The spinning queue is a queue of spinning threads. It solves the
// fragmentation problem. The idea is to minimize the number of threads
// processing requests. We can't control how system threads are scheduled, so
// can't distribute requests efficiently. The spinning queue emulates virtual
// threads sorted by their spinning time.
//
// This queue is lock-less to be sure that any thread scheduled out
// from CPU doesn't block others.
//
// The size of the queue must be a divisor of 2^32, because queue indexes are
// calculated as modules of uint32 values.
#define SPINNING_QUEUE_SIZE 256

// MAX_RE_ENQUEUE defines the amount of time a given entry in the spinning queue
// needs to reach timeout in order to be removed. Re-enqueuing a timeout is done
// in order to mitigate rdtsc inaccuracies.
#define MAX_RE_ENQUEUE 2

struct spinning_queue {
  uint32_t len;
  uint32_t start;
  uint32_t end;
  uint64_t start_times[SPINNING_QUEUE_SIZE];
  uint8_t num_times_re_enqueued[SPINNING_QUEUE_SIZE];
};

struct spinning_queue *__export_spinning_queue_addr;

// spinning_queue_push adds a new thread to the queue. It returns false if the
// queue is full, or if re_enqueue_times has reached MAX_RE_ENQUEUE.
static bool spinning_queue_push(uint8_t re_enqueue_times)
    __attribute__((warn_unused_result));
static bool spinning_queue_push(uint8_t re_enqueue_times) {
  struct spinning_queue *queue = __export_spinning_queue_addr;
  uint32_t idx, end, len;

  BUILD_BUG_ON(sizeof(struct spinning_queue) > SPINNING_QUEUE_MEM_SIZE);
  if (re_enqueue_times >= MAX_RE_ENQUEUE) {
    return false;
  }

  len = atomic_add(&queue->len, 1);
  if (len > SPINNING_QUEUE_SIZE) {
    atomic_sub(&queue->len, 1);
    return false;
  }
  end = atomic_add(&queue->end, 1);

  idx = end - 1;
  atomic_store(&queue->num_times_re_enqueued[idx % SPINNING_QUEUE_SIZE],
               re_enqueue_times);
  atomic_store(&queue->start_times[idx % SPINNING_QUEUE_SIZE], rdtsc());
  return true;
}

// spinning_queue_pop() removes one thread from a queue that has been spinning
// the shortest time.
// However it doesn't take into account the spinning re-enqueue.
static void spinning_queue_pop() {
  struct spinning_queue *queue = __export_spinning_queue_addr;

  atomic_sub(&queue->end, 1);
  atomic_sub(&queue->len, 1);
}

// spinning_queue_remove_first removes one thread from a queue that has been
// spinning longer than others and longer than a specified timeout.
//
// If `timeout` is zero, it always removes one element and never returns false.
//
// Returns true if one thread has been removed from the queue.
static bool spinning_queue_remove_first(uint64_t timeout)
    __attribute__((warn_unused_result));
static bool spinning_queue_remove_first(uint64_t timeout) {
  struct spinning_queue *queue = __export_spinning_queue_addr;
  uint64_t ts;
  uint8_t re_enqueue = 0;

  while (1) {
    uint32_t idx, qidx;

    idx = atomic_load(&queue->start);
    qidx = idx % SPINNING_QUEUE_SIZE;
    ts = atomic_load(&queue->start_times[qidx]);

    if (ts == 0) continue;
    if (rdtsc() - ts < timeout) return false;
    if (idx != atomic_load(&queue->start)) continue;  // Lose the race.

    re_enqueue = atomic_load(&queue->num_times_re_enqueued[qidx]);
    if (atomic_compare_exchange(&queue->start_times[qidx], &ts, 0)) {
      atomic_add(&queue->start, 1);
      break;
    }
  }

  atomic_sub(&queue->len, 1);
  if (timeout == 0) return true;
  return !spinning_queue_push(re_enqueue + 1);
}

struct thread_context *queue_get_context(struct sysmsg *sysmsg) {
  struct context_queue *queue = __export_context_queue_addr;

  // Indexes should not jump when start or end are overflowed.
  BUILD_BUG_ON(UINT32_MAX % MAX_CONTEXT_QUEUE_ENTRIES !=
               MAX_CONTEXT_QUEUE_ENTRIES - 1);

  while (!is_empty(queue)) {
    uint64_t idx = atomic_load(&queue->start);
    uint32_t next = idx % MAX_CONTEXT_QUEUE_ENTRIES;
    uint64_t v = atomic_load(&queue->ringbuffer[next]);

    // We need to check the index to be sure that a ring buffer hasn't been
    // recycled.
    if ((v >> CQ_INDEX_SHIFT) != idx) continue;
    if (!atomic_compare_exchange(&queue->ringbuffer[next], &v,
                                 INVALID_CONTEXT_ID)) {
      continue;
    }

    uint32_t context_id = v & CQ_CONTEXT_MASK;
    if (context_id == INVALID_CONTEXT_ID) continue;

    atomic_add(&queue->start, 1);
    if (context_id > MAX_GUEST_CONTEXTS) {
      panic(STUB_ERROR_BAD_CONTEXT_ID, context_id);
    }
    struct thread_context *ctx = thread_context_addr(context_id);
    sysmsg->context = ctx;
    atomic_store(&ctx->acked_time, rdtsc());
    atomic_store(&ctx->thread_id, sysmsg->thread_id);
    return ctx;
  }
  return NULL;
}

// get_context_fast sets nr_active_threads_p only if it deactivates the thread.
static struct thread_context *get_context_fast(struct sysmsg *sysmsg,
                                               struct context_queue *queue,
                                               uint32_t *nr_active_threads_p) {
  uint32_t nr_active_threads, nr_awake_contexts;

  if (!spinning_queue_push(0)) return NULL;
  atomic_store(&queue->used_fast_path, 1);

  while (1) {
    struct thread_context *ctx;

    ctx = queue_get_context(sysmsg);
    if (ctx) {
      spinning_queue_pop();
      return ctx;
    }

    if (atomic_load(&queue->fast_path_disabled) != 0) {
      if (!spinning_queue_remove_first(0))
        panic(STUB_ERROR_SPINNING_QUEUE_DECREF, 0);
      break;
    }

    nr_active_threads = atomic_load(&queue->num_active_threads);
    nr_awake_contexts = atomic_load(&queue->num_awake_contexts);

    if (nr_awake_contexts < nr_active_threads) {
      if (atomic_compare_exchange(&queue->num_active_threads,
                                  &nr_active_threads, nr_active_threads - 1)) {
        nr_active_threads -= 1;
        if (!spinning_queue_remove_first(0))
          panic(STUB_ERROR_SPINNING_QUEUE_DECREF, 0);
        *nr_active_threads_p = nr_active_threads;
        break;
      }
    }

    if (spinning_queue_remove_first(__export_deep_sleep_timeout)) {
      break;
    }
    spinloop();
  }
  return NULL;
}

#define NR_IF_THREAD_IS_ACTIVE (~0)

static bool try_to_dec_threads_to_wakeup(struct context_queue *queue) {
  while (1) {
    uint32_t nr = atomic_load(&queue->num_threads_to_wakeup);
    if (nr == 0) {
      return false;
    }
    if (atomic_compare_exchange(&queue->num_threads_to_wakeup, &nr, nr - 1)) {
      return true;
    };
  }
}

void init_new_thread() {
  struct context_queue *queue = __export_context_queue_addr;

  atomic_add(&queue->num_active_threads, 1);
  try_to_dec_threads_to_wakeup(queue);
}

// get_context retrieves a context that is ready to be restored to the user.
// This populates sysmsg->thread_context_id.
struct thread_context *get_context(struct sysmsg *sysmsg) {
  struct context_queue *queue = __export_context_queue_addr;
  uint32_t nr_active_threads;

  struct thread_context *ctx;
  for (;;) {
    atomic_add(&queue->num_spinning_threads, 1);

    // Change sysmsg thread state just to indicate thread is not asleep.
    atomic_store(&sysmsg->state, THREAD_STATE_PREP);
    ctx = queue_get_context(sysmsg);
    if (ctx) {
      goto exit;
    }

    bool fast_path_enabled = atomic_load(&queue->fast_path_disabled) == 0;

    nr_active_threads = NR_IF_THREAD_IS_ACTIVE;
    if (fast_path_enabled) {
      ctx = get_context_fast(sysmsg, queue, &nr_active_threads);
      if (ctx) goto exit;
    }
    if (nr_active_threads == NR_IF_THREAD_IS_ACTIVE) {
      nr_active_threads = atomic_sub(&queue->num_active_threads, 1);
    }

    atomic_sub(&queue->num_spinning_threads, 1);
    atomic_store(&sysmsg->state, THREAD_STATE_ASLEEP);
    uint32_t nr_active_contexts = atomic_load(&queue->num_active_contexts);
    // We have to make another attempt to get a context here to prevent TOCTTOU
    // races with waitOnState and kickSysmsgThread. There are two assumptions:
    // * If the queue isn't empty, one or more threads have to be active.
    // * A new thread isn't kicked, if the number of active threads are not less
    //   than a number of active contexts.
    if (nr_active_threads < nr_active_contexts) {
      ctx = queue_get_context(sysmsg);
      if (ctx) {
        atomic_store(&sysmsg->state, THREAD_STATE_PREP);
        atomic_add(&queue->num_active_threads, 1);
        return ctx;
      }
    }

    while (1) {
      if (!try_to_dec_threads_to_wakeup(queue)) {
        sys_futex(&queue->num_threads_to_wakeup, FUTEX_WAIT, 0, NULL, NULL, 0);
        continue;
      }
      // Mark this thread as being active only if it can get a context.
      ctx = queue_get_context(sysmsg);
      if (ctx) {
        atomic_store(&sysmsg->state, THREAD_STATE_PREP);
        atomic_add(&queue->num_active_threads, 1);
        return ctx;
      }
    }
  }
exit:
  atomic_sub(&queue->num_spinning_threads, 1);
  return ctx;
}

// switch_context signals the sentry that the old context is ready to be worked
// on and retrieves a new context to switch to.
struct thread_context *switch_context(struct sysmsg *sysmsg,
                                      struct thread_context *ctx,
                                      enum context_state new_context_state) {
  struct context_queue *queue = __export_context_queue_addr;

  if (ctx) {
    atomic_sub(&queue->num_active_contexts, 1);
    atomic_store(&ctx->thread_id, INVALID_THREAD_ID);
    atomic_store(&ctx->last_thread_id, sysmsg->thread_id);
    atomic_store(&ctx->state_changed_time, rdtsc());
    atomic_store(&ctx->state, new_context_state);
    if (atomic_load(&ctx->sentry_fast_path) == 0) {
      int ret = sys_futex(&ctx->state, FUTEX_WAKE, 1, NULL, NULL, 0);
      if (ret < 0) {
        panic(STUB_ERROR_FUTEX, ret);
      }
    }
  }

  return get_context(sysmsg);
}

void verify_offsets() {
  BUILD_BUG_ON(offsetof_sysmsg_self != offsetof(struct sysmsg, self));
  BUILD_BUG_ON(offsetof_sysmsg_ret_addr != offsetof(struct sysmsg, ret_addr));
  BUILD_BUG_ON(offsetof_sysmsg_syshandler !=
               offsetof(struct sysmsg, syshandler));
  BUILD_BUG_ON(offsetof_sysmsg_syshandler_stack !=
               offsetof(struct sysmsg, syshandler_stack));
  BUILD_BUG_ON(offsetof_sysmsg_app_stack != offsetof(struct sysmsg, app_stack));
  BUILD_BUG_ON(offsetof_sysmsg_interrupt != offsetof(struct sysmsg, interrupt));
  BUILD_BUG_ON(offsetof_sysmsg_state != offsetof(struct sysmsg, state));
  BUILD_BUG_ON(offsetof_sysmsg_context != offsetof(struct sysmsg, context));

  BUILD_BUG_ON(offsetof_thread_context_fpstate !=
               offsetof(struct thread_context, fpstate));
  BUILD_BUG_ON(offsetof_thread_context_fpstate_changed !=
               offsetof(struct thread_context, fpstate_changed));
  BUILD_BUG_ON(offsetof_thread_context_ptregs !=
               offsetof(struct thread_context, ptregs));

  BUILD_BUG_ON(kTHREAD_STATE_NONE != THREAD_STATE_NONE);

  BUILD_BUG_ON(sizeof(struct thread_context) >
               ALLOCATED_SIZEOF_THREAD_CONTEXT_STRUCT);
}