1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
// Copyright 2022 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#define _GNU_SOURCE
#include <errno.h>
#include <linux/futex.h>
#include <linux/unistd.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include "atomic.h"
#include "sysmsg.h"
// __export_deep_sleep_timeout is the timeout after which the stub thread stops
// polling and fall asleep.
uint64_t __export_deep_sleep_timeout;
// LINT.IfChange
#define MAX_GUEST_CONTEXTS (4095)
#define MAX_CONTEXT_QUEUE_ENTRIES (MAX_GUEST_CONTEXTS + 1)
#define INVALID_CONTEXT_ID 0xfefefefe
#define INVALID_THREAD_ID 0xfefefefe
// Each element of a context_queue ring buffer is a sum of its index shifted by
// CQ_INDEX_SHIFT and context_id.
#define CQ_INDEX_SHIFT 32
#define CQ_CONTEXT_MASK ((1UL << CQ_INDEX_SHIFT) - 1)
// See systrap/context_queue.go
struct context_queue {
uint32_t start;
uint32_t end;
uint32_t num_active_threads;
uint32_t num_spinning_threads;
uint32_t num_threads_to_wakeup;
uint32_t num_active_contexts;
uint32_t num_awake_contexts;
uint32_t fast_path_disabled;
uint32_t used_fast_path;
uint64_t ringbuffer[MAX_CONTEXT_QUEUE_ENTRIES];
};
struct context_queue *__export_context_queue_addr;
// LINT.ThenChange(../context_queue.go)
uint32_t is_empty(struct context_queue *queue) {
return atomic_load(&queue->start) == atomic_load(&queue->end);
}
int32_t queued_contexts(struct context_queue *queue) {
return (atomic_load(&queue->end) + MAX_CONTEXT_QUEUE_ENTRIES -
atomic_load(&queue->start)) %
MAX_CONTEXT_QUEUE_ENTRIES;
}
#if defined(__x86_64__)
static __inline__ unsigned long rdtsc(void) {
unsigned h, l;
__asm__ __volatile__("rdtsc" : "=a"(l), "=d"(h));
return ((unsigned long)l) | (((unsigned long)h) << 32);
}
static __inline__ void spinloop(void) { asm("pause"); }
#elif defined(__aarch64__)
static __inline__ unsigned long rdtsc(void) {
long val;
asm volatile("mrs %0, cntvct_el0" : "=r"(val));
return val;
}
static __inline__ void spinloop(void) { asm volatile("yield" : : : "memory"); }
#endif
void *__export_context_region;
static struct thread_context *thread_context_addr(uint32_t tcid) {
return (struct thread_context *)(__export_context_region +
tcid *
ALLOCATED_SIZEOF_THREAD_CONTEXT_STRUCT);
}
void memcpy(uint8_t *dest, uint8_t *src, size_t n) {
for (size_t i = 0; i < n; i += 1) {
dest[i] = src[i];
}
}
// The spinning queue is a queue of spinning threads. It solves the
// fragmentation problem. The idea is to minimize the number of threads
// processing requests. We can't control how system threads are scheduled, so
// can't distribute requests efficiently. The spinning queue emulates virtual
// threads sorted by their spinning time.
//
// This queue is lock-less to be sure that any thread scheduled out
// from CPU doesn't block others.
//
// The size of the queue must be a divisor of 2^32, because queue indexes are
// calculated as modules of uint32 values.
#define SPINNING_QUEUE_SIZE 256
// MAX_RE_ENQUEUE defines the amount of time a given entry in the spinning queue
// needs to reach timeout in order to be removed. Re-enqueuing a timeout is done
// in order to mitigate rdtsc inaccuracies.
#define MAX_RE_ENQUEUE 2
struct spinning_queue {
uint32_t len;
uint32_t start;
uint32_t end;
uint64_t start_times[SPINNING_QUEUE_SIZE];
uint8_t num_times_re_enqueued[SPINNING_QUEUE_SIZE];
};
struct spinning_queue *__export_spinning_queue_addr;
// spinning_queue_push adds a new thread to the queue. It returns false if the
// queue is full, or if re_enqueue_times has reached MAX_RE_ENQUEUE.
static bool spinning_queue_push(uint8_t re_enqueue_times)
__attribute__((warn_unused_result));
static bool spinning_queue_push(uint8_t re_enqueue_times) {
struct spinning_queue *queue = __export_spinning_queue_addr;
uint32_t idx, end, len;
BUILD_BUG_ON(sizeof(struct spinning_queue) > SPINNING_QUEUE_MEM_SIZE);
if (re_enqueue_times >= MAX_RE_ENQUEUE) {
return false;
}
len = atomic_add(&queue->len, 1);
if (len > SPINNING_QUEUE_SIZE) {
atomic_sub(&queue->len, 1);
return false;
}
end = atomic_add(&queue->end, 1);
idx = end - 1;
atomic_store(&queue->num_times_re_enqueued[idx % SPINNING_QUEUE_SIZE],
re_enqueue_times);
atomic_store(&queue->start_times[idx % SPINNING_QUEUE_SIZE], rdtsc());
return true;
}
// spinning_queue_pop() removes one thread from a queue that has been spinning
// the shortest time.
// However it doesn't take into account the spinning re-enqueue.
static void spinning_queue_pop() {
struct spinning_queue *queue = __export_spinning_queue_addr;
atomic_sub(&queue->end, 1);
atomic_sub(&queue->len, 1);
}
// spinning_queue_remove_first removes one thread from a queue that has been
// spinning longer than others and longer than a specified timeout.
//
// If `timeout` is zero, it always removes one element and never returns false.
//
// Returns true if one thread has been removed from the queue.
static bool spinning_queue_remove_first(uint64_t timeout)
__attribute__((warn_unused_result));
static bool spinning_queue_remove_first(uint64_t timeout) {
struct spinning_queue *queue = __export_spinning_queue_addr;
uint64_t ts;
uint8_t re_enqueue = 0;
while (1) {
uint32_t idx, qidx;
idx = atomic_load(&queue->start);
qidx = idx % SPINNING_QUEUE_SIZE;
ts = atomic_load(&queue->start_times[qidx]);
if (ts == 0) continue;
if (rdtsc() - ts < timeout) return false;
if (idx != atomic_load(&queue->start)) continue; // Lose the race.
re_enqueue = atomic_load(&queue->num_times_re_enqueued[qidx]);
if (atomic_compare_exchange(&queue->start_times[qidx], &ts, 0)) {
atomic_add(&queue->start, 1);
break;
}
}
atomic_sub(&queue->len, 1);
if (timeout == 0) return true;
return !spinning_queue_push(re_enqueue + 1);
}
struct thread_context *queue_get_context(struct sysmsg *sysmsg) {
struct context_queue *queue = __export_context_queue_addr;
// Indexes should not jump when start or end are overflowed.
BUILD_BUG_ON(UINT32_MAX % MAX_CONTEXT_QUEUE_ENTRIES !=
MAX_CONTEXT_QUEUE_ENTRIES - 1);
while (!is_empty(queue)) {
uint64_t idx = atomic_load(&queue->start);
uint32_t next = idx % MAX_CONTEXT_QUEUE_ENTRIES;
uint64_t v = atomic_load(&queue->ringbuffer[next]);
// We need to check the index to be sure that a ring buffer hasn't been
// recycled.
if ((v >> CQ_INDEX_SHIFT) != idx) continue;
if (!atomic_compare_exchange(&queue->ringbuffer[next], &v,
INVALID_CONTEXT_ID)) {
continue;
}
uint32_t context_id = v & CQ_CONTEXT_MASK;
if (context_id == INVALID_CONTEXT_ID) continue;
atomic_add(&queue->start, 1);
if (context_id > MAX_GUEST_CONTEXTS) {
panic(STUB_ERROR_BAD_CONTEXT_ID, context_id);
}
struct thread_context *ctx = thread_context_addr(context_id);
sysmsg->context = ctx;
atomic_store(&ctx->acked_time, rdtsc());
atomic_store(&ctx->thread_id, sysmsg->thread_id);
return ctx;
}
return NULL;
}
// get_context_fast sets nr_active_threads_p only if it deactivates the thread.
static struct thread_context *get_context_fast(struct sysmsg *sysmsg,
struct context_queue *queue,
uint32_t *nr_active_threads_p) {
uint32_t nr_active_threads, nr_awake_contexts;
if (!spinning_queue_push(0)) return NULL;
atomic_store(&queue->used_fast_path, 1);
while (1) {
struct thread_context *ctx;
ctx = queue_get_context(sysmsg);
if (ctx) {
spinning_queue_pop();
return ctx;
}
if (atomic_load(&queue->fast_path_disabled) != 0) {
if (!spinning_queue_remove_first(0))
panic(STUB_ERROR_SPINNING_QUEUE_DECREF, 0);
break;
}
nr_active_threads = atomic_load(&queue->num_active_threads);
nr_awake_contexts = atomic_load(&queue->num_awake_contexts);
if (nr_awake_contexts < nr_active_threads) {
if (atomic_compare_exchange(&queue->num_active_threads,
&nr_active_threads, nr_active_threads - 1)) {
nr_active_threads -= 1;
if (!spinning_queue_remove_first(0))
panic(STUB_ERROR_SPINNING_QUEUE_DECREF, 0);
*nr_active_threads_p = nr_active_threads;
break;
}
}
if (spinning_queue_remove_first(__export_deep_sleep_timeout)) {
break;
}
spinloop();
}
return NULL;
}
#define NR_IF_THREAD_IS_ACTIVE (~0)
static bool try_to_dec_threads_to_wakeup(struct context_queue *queue) {
while (1) {
uint32_t nr = atomic_load(&queue->num_threads_to_wakeup);
if (nr == 0) {
return false;
}
if (atomic_compare_exchange(&queue->num_threads_to_wakeup, &nr, nr - 1)) {
return true;
};
}
}
void init_new_thread() {
struct context_queue *queue = __export_context_queue_addr;
atomic_add(&queue->num_active_threads, 1);
try_to_dec_threads_to_wakeup(queue);
}
// get_context retrieves a context that is ready to be restored to the user.
// This populates sysmsg->thread_context_id.
struct thread_context *get_context(struct sysmsg *sysmsg) {
struct context_queue *queue = __export_context_queue_addr;
uint32_t nr_active_threads;
struct thread_context *ctx;
for (;;) {
atomic_add(&queue->num_spinning_threads, 1);
// Change sysmsg thread state just to indicate thread is not asleep.
atomic_store(&sysmsg->state, THREAD_STATE_PREP);
ctx = queue_get_context(sysmsg);
if (ctx) {
goto exit;
}
bool fast_path_enabled = atomic_load(&queue->fast_path_disabled) == 0;
nr_active_threads = NR_IF_THREAD_IS_ACTIVE;
if (fast_path_enabled) {
ctx = get_context_fast(sysmsg, queue, &nr_active_threads);
if (ctx) goto exit;
}
if (nr_active_threads == NR_IF_THREAD_IS_ACTIVE) {
nr_active_threads = atomic_sub(&queue->num_active_threads, 1);
}
atomic_sub(&queue->num_spinning_threads, 1);
atomic_store(&sysmsg->state, THREAD_STATE_ASLEEP);
uint32_t nr_active_contexts = atomic_load(&queue->num_active_contexts);
// We have to make another attempt to get a context here to prevent TOCTTOU
// races with waitOnState and kickSysmsgThread. There are two assumptions:
// * If the queue isn't empty, one or more threads have to be active.
// * A new thread isn't kicked, if the number of active threads are not less
// than a number of active contexts.
if (nr_active_threads < nr_active_contexts) {
ctx = queue_get_context(sysmsg);
if (ctx) {
atomic_store(&sysmsg->state, THREAD_STATE_PREP);
atomic_add(&queue->num_active_threads, 1);
return ctx;
}
}
while (1) {
if (!try_to_dec_threads_to_wakeup(queue)) {
sys_futex(&queue->num_threads_to_wakeup, FUTEX_WAIT, 0, NULL, NULL, 0);
continue;
}
// Mark this thread as being active only if it can get a context.
ctx = queue_get_context(sysmsg);
if (ctx) {
atomic_store(&sysmsg->state, THREAD_STATE_PREP);
atomic_add(&queue->num_active_threads, 1);
return ctx;
}
}
}
exit:
atomic_sub(&queue->num_spinning_threads, 1);
return ctx;
}
// switch_context signals the sentry that the old context is ready to be worked
// on and retrieves a new context to switch to.
struct thread_context *switch_context(struct sysmsg *sysmsg,
struct thread_context *ctx,
enum context_state new_context_state) {
struct context_queue *queue = __export_context_queue_addr;
if (ctx) {
atomic_sub(&queue->num_active_contexts, 1);
atomic_store(&ctx->thread_id, INVALID_THREAD_ID);
atomic_store(&ctx->last_thread_id, sysmsg->thread_id);
atomic_store(&ctx->state_changed_time, rdtsc());
atomic_store(&ctx->state, new_context_state);
if (atomic_load(&ctx->sentry_fast_path) == 0) {
int ret = sys_futex(&ctx->state, FUTEX_WAKE, 1, NULL, NULL, 0);
if (ret < 0) {
panic(STUB_ERROR_FUTEX, ret);
}
}
}
return get_context(sysmsg);
}
void verify_offsets() {
BUILD_BUG_ON(offsetof_sysmsg_self != offsetof(struct sysmsg, self));
BUILD_BUG_ON(offsetof_sysmsg_ret_addr != offsetof(struct sysmsg, ret_addr));
BUILD_BUG_ON(offsetof_sysmsg_syshandler !=
offsetof(struct sysmsg, syshandler));
BUILD_BUG_ON(offsetof_sysmsg_syshandler_stack !=
offsetof(struct sysmsg, syshandler_stack));
BUILD_BUG_ON(offsetof_sysmsg_app_stack != offsetof(struct sysmsg, app_stack));
BUILD_BUG_ON(offsetof_sysmsg_interrupt != offsetof(struct sysmsg, interrupt));
BUILD_BUG_ON(offsetof_sysmsg_state != offsetof(struct sysmsg, state));
BUILD_BUG_ON(offsetof_sysmsg_context != offsetof(struct sysmsg, context));
BUILD_BUG_ON(offsetof_thread_context_fpstate !=
offsetof(struct thread_context, fpstate));
BUILD_BUG_ON(offsetof_thread_context_fpstate_changed !=
offsetof(struct thread_context, fpstate_changed));
BUILD_BUG_ON(offsetof_thread_context_ptregs !=
offsetof(struct thread_context, ptregs));
BUILD_BUG_ON(kTHREAD_STATE_NONE != THREAD_STATE_NONE);
BUILD_BUG_ON(sizeof(struct thread_context) >
ALLOCATED_SIZEOF_THREAD_CONTEXT_STRUCT);
}
|