1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package linux
import (
"fmt"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/usermem"
)
// We unconditionally report a single NUMA node. This also means that our
// "nodemask_t" is a single unsigned long (uint64).
const (
maxNodes = 1
allowedNodemask = (1 << maxNodes) - 1
)
func copyInNodemask(t *kernel.Task, addr hostarch.Addr, maxnode uint32) (uint64, error) {
// "nodemask points to a bit mask of node IDs that contains up to maxnode
// bits. The bit mask size is rounded to the next multiple of
// sizeof(unsigned long), but the kernel will use bits only up to maxnode.
// A NULL value of nodemask or a maxnode value of zero specifies the empty
// set of nodes. If the value of maxnode is zero, the nodemask argument is
// ignored." - set_mempolicy(2). Unfortunately, most of this is inaccurate
// because of what appears to be a bug: mm/mempolicy.c:get_nodes() uses
// maxnode-1, not maxnode, as the number of bits.
bits := maxnode - 1
if bits > hostarch.PageSize*8 { // also handles overflow from maxnode == 0
return 0, linuxerr.EINVAL
}
if bits == 0 {
return 0, nil
}
// Copy in the whole nodemask.
numUint64 := (bits + 63) / 64
buf := t.CopyScratchBuffer(int(numUint64) * 8)
if _, err := t.CopyInBytes(addr, buf); err != nil {
return 0, err
}
val := hostarch.ByteOrder.Uint64(buf)
// Check that only allowed bits in the first unsigned long in the nodemask
// are set.
if val&^allowedNodemask != 0 {
return 0, linuxerr.EINVAL
}
// Check that all remaining bits in the nodemask are 0.
for i := 8; i < len(buf); i++ {
if buf[i] != 0 {
return 0, linuxerr.EINVAL
}
}
return val, nil
}
func copyOutNodemask(t *kernel.Task, addr hostarch.Addr, maxnode uint32, val uint64) error {
// mm/mempolicy.c:copy_nodes_to_user() also uses maxnode-1 as the number of
// bits.
bits := maxnode - 1
if bits > hostarch.PageSize*8 { // also handles overflow from maxnode == 0
return linuxerr.EINVAL
}
if bits == 0 {
return nil
}
// Copy out the first unsigned long in the nodemask.
buf := t.CopyScratchBuffer(8)
hostarch.ByteOrder.PutUint64(buf, val)
if _, err := t.CopyOutBytes(addr, buf); err != nil {
return err
}
// Zero out remaining unsigned longs in the nodemask.
if bits > 64 {
remAddr, ok := addr.AddLength(8)
if !ok {
return linuxerr.EFAULT
}
remUint64 := (bits - 1) / 64
if _, err := t.MemoryManager().ZeroOut(t, remAddr, int64(remUint64)*8, usermem.IOOpts{
AddressSpaceActive: true,
}); err != nil {
return err
}
}
return nil
}
// GetMempolicy implements the syscall get_mempolicy(2).
func GetMempolicy(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
mode := args[0].Pointer()
nodemask := args[1].Pointer()
maxnode := args[2].Uint()
addr := args[3].Pointer()
flags := args[4].Uint()
if flags&^(linux.MPOL_F_NODE|linux.MPOL_F_ADDR|linux.MPOL_F_MEMS_ALLOWED) != 0 {
return 0, nil, linuxerr.EINVAL
}
nodeFlag := flags&linux.MPOL_F_NODE != 0
addrFlag := flags&linux.MPOL_F_ADDR != 0
memsAllowed := flags&linux.MPOL_F_MEMS_ALLOWED != 0
// "EINVAL: The value specified by maxnode is less than the number of node
// IDs supported by the system." - get_mempolicy(2)
if nodemask != 0 && maxnode < maxNodes {
return 0, nil, linuxerr.EINVAL
}
// "If flags specifies MPOL_F_MEMS_ALLOWED [...], the mode argument is
// ignored and the set of nodes (memories) that the thread is allowed to
// specify in subsequent calls to mbind(2) or set_mempolicy(2) (in the
// absence of any mode flags) is returned in nodemask."
if memsAllowed {
// "It is not permitted to combine MPOL_F_MEMS_ALLOWED with either
// MPOL_F_ADDR or MPOL_F_NODE."
if nodeFlag || addrFlag {
return 0, nil, linuxerr.EINVAL
}
if err := copyOutNodemask(t, nodemask, maxnode, allowedNodemask); err != nil {
return 0, nil, err
}
return 0, nil, nil
}
// "If flags specifies MPOL_F_ADDR, then information is returned about the
// policy governing the memory address given in addr. ... If the mode
// argument is not NULL, then get_mempolicy() will store the policy mode
// and any optional mode flags of the requested NUMA policy in the location
// pointed to by this argument. If nodemask is not NULL, then the nodemask
// associated with the policy will be stored in the location pointed to by
// this argument."
if addrFlag {
policy, nodemaskVal, err := t.MemoryManager().NumaPolicy(addr)
if err != nil {
return 0, nil, err
}
if nodeFlag {
// "If flags specifies both MPOL_F_NODE and MPOL_F_ADDR,
// get_mempolicy() will return the node ID of the node on which the
// address addr is allocated into the location pointed to by mode.
// If no page has yet been allocated for the specified address,
// get_mempolicy() will allocate a page as if the thread had
// performed a read (load) access to that address, and return the
// ID of the node where that page was allocated."
buf := t.CopyScratchBuffer(1)
_, err := t.CopyInBytes(addr, buf)
if err != nil {
return 0, nil, err
}
policy = linux.MPOL_DEFAULT // maxNodes == 1
}
if mode != 0 {
if _, err := policy.CopyOut(t, mode); err != nil {
return 0, nil, err
}
}
if nodemask != 0 {
if err := copyOutNodemask(t, nodemask, maxnode, nodemaskVal); err != nil {
return 0, nil, err
}
}
return 0, nil, nil
}
// "EINVAL: ... flags specified MPOL_F_ADDR and addr is NULL, or flags did
// not specify MPOL_F_ADDR and addr is not NULL." This is partially
// inaccurate: if flags specifies MPOL_F_ADDR,
// mm/mempolicy.c:do_get_mempolicy() doesn't special-case NULL; it will
// just (usually) fail to find a VMA at address 0 and return EFAULT.
if addr != 0 {
return 0, nil, linuxerr.EINVAL
}
// "If flags is specified as 0, then information about the calling thread's
// default policy (as set by set_mempolicy(2)) is returned, in the buffers
// pointed to by mode and nodemask. ... If flags specifies MPOL_F_NODE, but
// not MPOL_F_ADDR, and the thread's current policy is MPOL_INTERLEAVE,
// then get_mempolicy() will return in the location pointed to by a
// non-NULL mode argument, the node ID of the next node that will be used
// for interleaving of internal kernel pages allocated on behalf of the
// thread."
policy, nodemaskVal := t.NumaPolicy()
if nodeFlag {
if policy&^linux.MPOL_MODE_FLAGS != linux.MPOL_INTERLEAVE {
return 0, nil, linuxerr.EINVAL
}
policy = linux.MPOL_DEFAULT // maxNodes == 1
}
if mode != 0 {
if _, err := policy.CopyOut(t, mode); err != nil {
return 0, nil, err
}
}
if nodemask != 0 {
if err := copyOutNodemask(t, nodemask, maxnode, nodemaskVal); err != nil {
return 0, nil, err
}
}
return 0, nil, nil
}
// SetMempolicy implements the syscall set_mempolicy(2).
func SetMempolicy(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
modeWithFlags := linux.NumaPolicy(args[0].Int())
nodemask := args[1].Pointer()
maxnode := args[2].Uint()
modeWithFlags, nodemaskVal, err := copyInMempolicyNodemask(t, modeWithFlags, nodemask, maxnode)
if err != nil {
return 0, nil, err
}
t.SetNumaPolicy(modeWithFlags, nodemaskVal)
return 0, nil, nil
}
// Mbind implements the syscall mbind(2).
func Mbind(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
addr := args[0].Pointer()
length := args[1].Uint64()
mode := linux.NumaPolicy(args[2].Int())
nodemask := args[3].Pointer()
maxnode := args[4].Uint()
flags := args[5].Uint()
if flags&^linux.MPOL_MF_VALID != 0 {
return 0, nil, linuxerr.EINVAL
}
// "If MPOL_MF_MOVE_ALL is passed in flags ... [the] calling thread must be
// privileged (CAP_SYS_NICE) to use this flag." - mbind(2)
if flags&linux.MPOL_MF_MOVE_ALL != 0 && !t.HasCapability(linux.CAP_SYS_NICE) {
return 0, nil, linuxerr.EPERM
}
mode, nodemaskVal, err := copyInMempolicyNodemask(t, mode, nodemask, maxnode)
if err != nil {
return 0, nil, err
}
// Since we claim to have only a single node, all flags can be ignored
// (since all pages must already be on that single node).
err = t.MemoryManager().SetNumaPolicy(addr, length, mode, nodemaskVal)
return 0, nil, err
}
func copyInMempolicyNodemask(t *kernel.Task, modeWithFlags linux.NumaPolicy, nodemask hostarch.Addr, maxnode uint32) (linux.NumaPolicy, uint64, error) {
flags := linux.NumaPolicy(modeWithFlags & linux.MPOL_MODE_FLAGS)
mode := linux.NumaPolicy(modeWithFlags &^ linux.MPOL_MODE_FLAGS)
if flags == linux.MPOL_MODE_FLAGS {
// Can't specify both mode flags simultaneously.
return 0, 0, linuxerr.EINVAL
}
if mode < 0 || mode >= linux.MPOL_MAX {
// Must specify a valid mode.
return 0, 0, linuxerr.EINVAL
}
var nodemaskVal uint64
if nodemask != 0 {
var err error
nodemaskVal, err = copyInNodemask(t, nodemask, maxnode)
if err != nil {
return 0, 0, err
}
}
switch mode {
case linux.MPOL_DEFAULT:
// "nodemask must be specified as NULL." - set_mempolicy(2). This is inaccurate;
// Linux allows a nodemask to be specified, as long as it is empty.
if nodemaskVal != 0 {
return 0, 0, linuxerr.EINVAL
}
case linux.MPOL_BIND, linux.MPOL_INTERLEAVE:
// These require a non-empty nodemask.
if nodemaskVal == 0 {
return 0, 0, linuxerr.EINVAL
}
case linux.MPOL_PREFERRED:
// This permits an empty nodemask, as long as no flags are set.
if nodemaskVal == 0 {
if flags != 0 {
return 0, 0, linuxerr.EINVAL
}
// On newer Linux versions, MPOL_PREFERRED is implemented as MPOL_LOCAL
// when node set is empty. See 7858d7bca7fb ("mm/mempolicy: don't handle
// MPOL_LOCAL like a fake MPOL_PREFERRED policy").
mode = linux.MPOL_LOCAL
}
case linux.MPOL_LOCAL:
// This requires an empty nodemask and no flags set.
if nodemaskVal != 0 || flags != 0 {
return 0, 0, linuxerr.EINVAL
}
default:
// Unknown mode, which we should have rejected above.
panic(fmt.Sprintf("unknown mode: %v", mode))
}
return mode | flags, nodemaskVal, nil
}
|