1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package linux
import (
"math"
"time"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/hostarch"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/fsimpl/signalfd"
"gvisor.dev/gvisor/pkg/sentry/kernel"
)
// "For a process to have permission to send a signal it must
// - either be privileged (CAP_KILL), or
// - the real or effective user ID of the sending process must be equal to the
//
// real or saved set-user-ID of the target process.
//
// In the case of SIGCONT it suffices when the sending and receiving processes
// belong to the same session." - kill(2)
//
// Equivalent to kernel/signal.c:check_kill_permission.
func mayKill(t *kernel.Task, target *kernel.Task, sig linux.Signal) bool {
// kernel/signal.c:check_kill_permission also allows a signal if the
// sending and receiving tasks share a thread group, which is not
// mentioned in kill(2) since kill does not allow task-level
// granularity in signal sending.
if t.ThreadGroup() == target.ThreadGroup() {
return true
}
if t.HasCapabilityIn(linux.CAP_KILL, target.UserNamespace()) {
return true
}
creds := t.Credentials()
tcreds := target.Credentials()
if creds.EffectiveKUID == tcreds.SavedKUID ||
creds.EffectiveKUID == tcreds.RealKUID ||
creds.RealKUID == tcreds.SavedKUID ||
creds.RealKUID == tcreds.RealKUID {
return true
}
if sig == linux.SIGCONT && target.ThreadGroup().Session() == t.ThreadGroup().Session() {
return true
}
return false
}
// Kill implements linux syscall kill(2).
func Kill(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
pid := kernel.ThreadID(args[0].Int())
sig := linux.Signal(args[1].Int())
switch {
case pid > 0:
// "If pid is positive, then signal sig is sent to the process with the
// ID specified by pid." - kill(2)
// This loops to handle races with execve where target dies between
// TaskWithID and SendGroupSignal. Compare Linux's
// kernel/signal.c:kill_pid_info().
for {
target := t.PIDNamespace().TaskWithID(pid)
if target == nil {
return 0, nil, linuxerr.ESRCH
}
if !mayKill(t, target, sig) {
return 0, nil, linuxerr.EPERM
}
info := &linux.SignalInfo{
Signo: int32(sig),
Code: linux.SI_USER,
}
info.SetPID(int32(target.PIDNamespace().IDOfTask(t)))
info.SetUID(int32(t.Credentials().RealKUID.In(target.UserNamespace()).OrOverflow()))
if err := target.SendGroupSignal(info); !linuxerr.Equals(linuxerr.ESRCH, err) {
return 0, nil, err
}
}
case pid == -1:
// "If pid equals -1, then sig is sent to every process for which the
// calling process has permission to send signals, except for process 1
// (init), but see below. ... POSIX.1-2001 requires that kill(-1,sig)
// send sig to all processes that the calling process may send signals
// to, except possibly for some implementation-defined system
// processes. Linux allows a process to signal itself, but on Linux the
// call kill(-1,sig) does not signal the calling process."
var (
lastErr error
delivered int
)
for _, tg := range t.PIDNamespace().ThreadGroups() {
if tg == t.ThreadGroup() {
continue
}
// Don't send the signal to the init process in t's PID namespace.
if tg.IsInitIn(t.PIDNamespace()) {
continue
}
// If pid == -1, the returned error is the last non-EPERM error
// from any call to group_send_sig_info.
if !mayKill(t, tg.Leader(), sig) {
continue
}
// Here and below, whether or not kill returns an error may
// depend on the iteration order. We at least implement the
// semantics documented by the man page: "On success (at least
// one signal was sent), zero is returned."
info := &linux.SignalInfo{
Signo: int32(sig),
Code: linux.SI_USER,
}
info.SetPID(int32(tg.PIDNamespace().IDOfTask(t)))
info.SetUID(int32(t.Credentials().RealKUID.In(tg.Leader().UserNamespace()).OrOverflow()))
err := tg.SendSignal(info)
if linuxerr.Equals(linuxerr.ESRCH, err) {
// ESRCH is ignored because it means the task
// exited while we were iterating. This is a
// race which would not normally exist on
// Linux, so we suppress it.
continue
}
delivered++
if err != nil {
lastErr = err
}
}
if delivered > 0 {
return 0, nil, lastErr
}
return 0, nil, linuxerr.ESRCH
default:
// "If pid equals 0, then sig is sent to every process in the process
// group of the calling process."
//
// "If pid is less than -1, then sig is sent to every process
// in the process group whose ID is -pid."
pgid := kernel.ProcessGroupID(-pid)
if pgid == 0 {
pgid = t.PIDNamespace().IDOfProcessGroup(t.ThreadGroup().ProcessGroup())
}
// If pid != -1 (i.e. signalling a process group), the returned error
// is the last error from any call to group_send_sig_info.
lastErr := error(linuxerr.ESRCH)
for _, tg := range t.PIDNamespace().ThreadGroups() {
if t.PIDNamespace().IDOfProcessGroup(tg.ProcessGroup()) == pgid {
if !mayKill(t, tg.Leader(), sig) {
lastErr = linuxerr.EPERM
continue
}
info := &linux.SignalInfo{
Signo: int32(sig),
Code: linux.SI_USER,
}
info.SetPID(int32(tg.PIDNamespace().IDOfTask(t)))
info.SetUID(int32(t.Credentials().RealKUID.In(tg.Leader().UserNamespace()).OrOverflow()))
// See note above regarding ESRCH race above.
if err := tg.SendSignal(info); !linuxerr.Equals(linuxerr.ESRCH, err) {
lastErr = err
}
}
}
return 0, nil, lastErr
}
}
func tkillSigInfo(sender, receiver *kernel.Task, sig linux.Signal) *linux.SignalInfo {
info := &linux.SignalInfo{
Signo: int32(sig),
Code: linux.SI_TKILL,
}
info.SetPID(int32(receiver.PIDNamespace().IDOfThreadGroup(sender.ThreadGroup())))
info.SetUID(int32(sender.Credentials().RealKUID.In(receiver.UserNamespace()).OrOverflow()))
return info
}
// Tkill implements linux syscall tkill(2).
func Tkill(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
tid := kernel.ThreadID(args[0].Int())
sig := linux.Signal(args[1].Int())
// N.B. Inconsistent with man page, linux actually rejects calls with
// tid <=0 by EINVAL. This isn't the same for all signal calls.
if tid <= 0 {
return 0, nil, linuxerr.EINVAL
}
target := t.PIDNamespace().TaskWithID(tid)
if target == nil {
return 0, nil, linuxerr.ESRCH
}
if !mayKill(t, target, sig) {
return 0, nil, linuxerr.EPERM
}
return 0, nil, target.SendSignal(tkillSigInfo(t, target, sig))
}
// Tgkill implements linux syscall tgkill(2).
func Tgkill(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
tgid := kernel.ThreadID(args[0].Int())
tid := kernel.ThreadID(args[1].Int())
sig := linux.Signal(args[2].Int())
// N.B. Inconsistent with man page, linux actually rejects calls with
// tgid/tid <=0 by EINVAL. This isn't the same for all signal calls.
if tgid <= 0 || tid <= 0 {
return 0, nil, linuxerr.EINVAL
}
targetTG := t.PIDNamespace().ThreadGroupWithID(tgid)
target := t.PIDNamespace().TaskWithID(tid)
if targetTG == nil || target == nil || target.ThreadGroup() != targetTG {
return 0, nil, linuxerr.ESRCH
}
if !mayKill(t, target, sig) {
return 0, nil, linuxerr.EPERM
}
return 0, nil, target.SendSignal(tkillSigInfo(t, target, sig))
}
// RtSigaction implements linux syscall rt_sigaction(2).
func RtSigaction(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
sig := linux.Signal(args[0].Int())
newactarg := args[1].Pointer()
oldactarg := args[2].Pointer()
sigsetsize := args[3].SizeT()
if sigsetsize != linux.SignalSetSize {
return 0, nil, linuxerr.EINVAL
}
var newactptr *linux.SigAction
if newactarg != 0 {
var newact linux.SigAction
if _, err := newact.CopyIn(t, newactarg); err != nil {
return 0, nil, err
}
newactptr = &newact
}
oldact, err := t.ThreadGroup().SetSigAction(sig, newactptr)
if err != nil {
return 0, nil, err
}
if oldactarg != 0 {
if _, err := oldact.CopyOut(t, oldactarg); err != nil {
return 0, nil, err
}
}
return 0, nil, nil
}
// Sigreturn implements linux syscall sigreturn(2).
func Sigreturn(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
ctrl, err := t.SignalReturn(false)
return 0, ctrl, err
}
// RtSigreturn implements linux syscall rt_sigreturn(2).
func RtSigreturn(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
ctrl, err := t.SignalReturn(true)
return 0, ctrl, err
}
// RtSigprocmask implements linux syscall rt_sigprocmask(2).
func RtSigprocmask(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
how := args[0].Int()
setaddr := args[1].Pointer()
oldaddr := args[2].Pointer()
sigsetsize := args[3].SizeT()
if sigsetsize != linux.SignalSetSize {
return 0, nil, linuxerr.EINVAL
}
oldmask := t.SignalMask()
if setaddr != 0 {
mask, err := copyInSigSet(t, setaddr, sigsetsize)
if err != nil {
return 0, nil, err
}
switch how {
case linux.SIG_BLOCK:
t.SetSignalMask(oldmask | mask)
case linux.SIG_UNBLOCK:
t.SetSignalMask(oldmask &^ mask)
case linux.SIG_SETMASK:
t.SetSignalMask(mask)
default:
return 0, nil, linuxerr.EINVAL
}
}
if oldaddr != 0 {
return 0, nil, copyOutSigSet(t, oldaddr, oldmask)
}
return 0, nil, nil
}
// Sigaltstack implements linux syscall sigaltstack(2).
func Sigaltstack(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
setaddr := args[0].Pointer()
oldaddr := args[1].Pointer()
ctrl, err := t.SigaltStack(setaddr, oldaddr)
return 0, ctrl, err
}
// Pause implements linux syscall pause(2).
func Pause(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
return 0, nil, linuxerr.ConvertIntr(t.Block(nil), linuxerr.ERESTARTNOHAND)
}
// RtSigpending implements linux syscall rt_sigpending(2).
func RtSigpending(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
addr := args[0].Pointer()
pending := t.PendingSignals()
_, err := pending.CopyOut(t, addr)
return 0, nil, err
}
// RtSigtimedwait implements linux syscall rt_sigtimedwait(2).
func RtSigtimedwait(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
sigset := args[0].Pointer()
siginfo := args[1].Pointer()
timespec := args[2].Pointer()
sigsetsize := args[3].SizeT()
mask, err := copyInSigSet(t, sigset, sigsetsize)
if err != nil {
return 0, nil, err
}
var timeout time.Duration
if timespec != 0 {
d, err := copyTimespecIn(t, timespec)
if err != nil {
return 0, nil, err
}
if !d.Valid() {
return 0, nil, linuxerr.EINVAL
}
timeout = time.Duration(d.ToNsecCapped())
} else {
timeout = time.Duration(math.MaxInt64)
}
si, err := t.Sigtimedwait(mask, timeout)
if err != nil {
return 0, nil, err
}
if siginfo != 0 {
si.FixSignalCodeForUser()
if _, err := si.CopyOut(t, siginfo); err != nil {
return 0, nil, err
}
}
return uintptr(si.Signo), nil, nil
}
// RtSigqueueinfo implements linux syscall rt_sigqueueinfo(2).
func RtSigqueueinfo(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
pid := kernel.ThreadID(args[0].Int())
sig := linux.Signal(args[1].Int())
infoAddr := args[2].Pointer()
// Copy in the info.
//
// We must ensure that the Signo is set (Linux overrides this in the
// same way), and that the code is in the allowed set. This same logic
// appears below in RtSigtgqueueinfo and should be kept in sync.
var info linux.SignalInfo
if _, err := info.CopyIn(t, infoAddr); err != nil {
return 0, nil, err
}
info.Signo = int32(sig)
// This must loop to handle the race with execve described in Kill.
for {
// Deliver to the given task's thread group.
target := t.PIDNamespace().TaskWithID(pid)
if target == nil {
return 0, nil, linuxerr.ESRCH
}
// If the sender is not the receiver, it can't use si_codes used by the
// kernel or SI_TKILL.
if (info.Code >= 0 || info.Code == linux.SI_TKILL) && target != t {
return 0, nil, linuxerr.EPERM
}
if !mayKill(t, target, sig) {
return 0, nil, linuxerr.EPERM
}
if err := target.SendGroupSignal(&info); !linuxerr.Equals(linuxerr.ESRCH, err) {
return 0, nil, err
}
}
}
// RtTgsigqueueinfo implements linux syscall rt_tgsigqueueinfo(2).
func RtTgsigqueueinfo(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
tgid := kernel.ThreadID(args[0].Int())
tid := kernel.ThreadID(args[1].Int())
sig := linux.Signal(args[2].Int())
infoAddr := args[3].Pointer()
// N.B. Inconsistent with man page, linux actually rejects calls with
// tgid/tid <=0 by EINVAL. This isn't the same for all signal calls.
if tgid <= 0 || tid <= 0 {
return 0, nil, linuxerr.EINVAL
}
// Copy in the info. See RtSigqueueinfo above.
var info linux.SignalInfo
if _, err := info.CopyIn(t, infoAddr); err != nil {
return 0, nil, err
}
info.Signo = int32(sig)
// Deliver to the given task.
targetTG := t.PIDNamespace().ThreadGroupWithID(tgid)
target := t.PIDNamespace().TaskWithID(tid)
if targetTG == nil || target == nil || target.ThreadGroup() != targetTG {
return 0, nil, linuxerr.ESRCH
}
// If the sender is not the receiver, it can't use si_codes used by the
// kernel or SI_TKILL.
if (info.Code >= 0 || info.Code == linux.SI_TKILL) && target != t {
return 0, nil, linuxerr.EPERM
}
if !mayKill(t, target, sig) {
return 0, nil, linuxerr.EPERM
}
return 0, nil, target.SendSignal(&info)
}
// RtSigsuspend implements linux syscall rt_sigsuspend(2).
func RtSigsuspend(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
sigset := args[0].Pointer()
// Copy in the signal mask.
var mask linux.SignalSet
if _, err := mask.CopyIn(t, sigset); err != nil {
return 0, nil, err
}
mask &^= kernel.UnblockableSignals
// Swap the mask.
oldmask := t.SignalMask()
t.SetSignalMask(mask)
t.SetSavedSignalMask(oldmask)
// Perform the wait.
return 0, nil, linuxerr.ConvertIntr(t.Block(nil), linuxerr.ERESTARTNOHAND)
}
// RestartSyscall implements the linux syscall restart_syscall(2).
func RestartSyscall(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
if r := t.SyscallRestartBlock(); r != nil {
n, err := r.Restart(t)
return n, nil, err
}
// The restart block should never be nil here, but it's possible
// ERESTART_RESTARTBLOCK was set by ptrace without the current syscall
// setting up a restart block. If ptrace didn't manipulate the return value,
// finding a nil restart block is a bug. Linux ensures that the restart
// function is never null by (re)initializing it with one that translates
// the restart into EINTR. We'll emulate that behaviour.
t.Debugf("Restart block missing in restart_syscall(2). Did ptrace inject a return value of ERESTART_RESTARTBLOCK?")
return 0, nil, linuxerr.EINTR
}
// sharedSignalfd is shared between the two calls.
func sharedSignalfd(t *kernel.Task, fd int32, sigset hostarch.Addr, sigsetsize uint, flags int32) (uintptr, *kernel.SyscallControl, error) {
// Copy in the signal mask.
mask, err := copyInSigSet(t, sigset, sigsetsize)
if err != nil {
return 0, nil, err
}
// Always check for valid flags, even if not creating.
if flags&^(linux.SFD_NONBLOCK|linux.SFD_CLOEXEC) != 0 {
return 0, nil, linuxerr.EINVAL
}
// Is this a change to an existing signalfd?
//
// The spec indicates that this should adjust the mask.
if fd != -1 {
file := t.GetFile(fd)
if file == nil {
return 0, nil, linuxerr.EBADF
}
defer file.DecRef(t)
// Is this a signalfd?
if sfd, ok := file.Impl().(*signalfd.SignalFileDescription); ok {
sfd.SetMask(mask)
return 0, nil, nil
}
// Not a signalfd.
return 0, nil, linuxerr.EINVAL
}
fileFlags := uint32(linux.O_RDWR)
if flags&linux.SFD_NONBLOCK != 0 {
fileFlags |= linux.O_NONBLOCK
}
// Create a new file.
vfsObj := t.Kernel().VFS()
file, err := signalfd.New(vfsObj, t, mask, fileFlags)
if err != nil {
return 0, nil, err
}
defer file.DecRef(t)
// Create a new descriptor.
fd, err = t.NewFDFrom(0, file, kernel.FDFlags{
CloseOnExec: flags&linux.SFD_CLOEXEC != 0,
})
if err != nil {
return 0, nil, err
}
// Done.
return uintptr(fd), nil, nil
}
// Signalfd implements the linux syscall signalfd(2).
func Signalfd(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
fd := args[0].Int()
sigset := args[1].Pointer()
sigsetsize := args[2].SizeT()
return sharedSignalfd(t, fd, sigset, sigsetsize, 0)
}
// Signalfd4 implements the linux syscall signalfd4(2).
func Signalfd4(t *kernel.Task, sysno uintptr, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
fd := args[0].Int()
sigset := args[1].Pointer()
sigsetsize := args[2].SizeT()
flags := args[3].Int()
return sharedSignalfd(t, fd, sigset, sigsetsize, flags)
}
|