1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package time provides a calibrated clock synchronized to a system reference
// clock.
package time
import (
"time"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/metric"
"gvisor.dev/gvisor/pkg/sync"
)
// CalibratedClock implements a clock that tracks a reference clock.
//
// Users should call Update at regular intervals of around approxUpdateInterval
// to ensure that the clock does not drift significantly from the reference
// clock.
type CalibratedClock struct {
// mu protects the fields below.
// TODO(mpratt): consider a sequence counter for read locking.
mu sync.RWMutex
// ref sample the reference clock that this clock is calibrated
// against.
ref *sampler
// ready indicates that the fields below are ready for use calculating
// time.
ready bool
// params are the current timekeeping parameters.
params Parameters
// errorNS is the estimated clock error in nanoseconds.
errorNS ReferenceNS
}
// NewCalibratedClock creates a CalibratedClock that tracks the given ClockID.
func NewCalibratedClock(c ClockID) *CalibratedClock {
return &CalibratedClock{
ref: newSampler(c),
}
}
// Debugf logs at debug level.
func (c *CalibratedClock) Debugf(format string, v ...any) {
if log.IsLogging(log.Debug) {
args := []any{c.ref.clockID}
args = append(args, v...)
log.Debugf("CalibratedClock(%v): "+format, args...)
}
}
// Infof logs at debug level.
func (c *CalibratedClock) Infof(format string, v ...any) {
if log.IsLogging(log.Info) {
args := []any{c.ref.clockID}
args = append(args, v...)
log.Infof("CalibratedClock(%v): "+format, args...)
}
}
// Warningf logs at debug level.
func (c *CalibratedClock) Warningf(format string, v ...any) {
if log.IsLogging(log.Warning) {
args := []any{c.ref.clockID}
args = append(args, v...)
log.Warningf("CalibratedClock(%v): "+format, args...)
}
}
// reset forces the clock to restart the calibration process, logging the
// passed message.
func (c *CalibratedClock) reset(str string, v ...any) {
c.mu.Lock()
defer c.mu.Unlock()
c.resetLocked(str, v...)
}
// resetLocked is equivalent to reset with c.mu already held for writing.
func (c *CalibratedClock) resetLocked(str string, v ...any) {
c.Warningf(str+" Resetting clock; time may jump.", v...)
c.ready = false
c.ref.Reset()
metric.WeirdnessMetric.Increment(&metric.WeirdnessTypeTimeFallback)
}
// updateParams updates the timekeeping parameters based on the passed
// parameters.
//
// actual is the actual estimated timekeeping parameters. The stored parameters
// may need to be adjusted slightly from these values to compensate for error.
//
// Preconditions: c.mu must be held for writing.
func (c *CalibratedClock) updateParams(actual Parameters) {
if !c.ready {
// At initial calibration there is nothing to correct.
c.params = actual
c.ready = true
c.Infof("ready")
return
}
// Otherwise, adjust the params to correct for errors.
newParams, errorNS, err := errorAdjust(c.params, actual, actual.BaseCycles)
if err != nil {
// Something is very wrong. Reset and try again from the
// beginning.
c.resetLocked("Unable to update params: %v.", err)
return
}
logErrorAdjustment(c.ref.clockID, errorNS, c.params, newParams)
if errorNS.Magnitude() >= MaxClockError {
// We should never get such extreme error, something is very
// wrong. Reset everything and start again.
//
// N.B. logErrorAdjustment will have already logged the error
// at warning level.
//
// TODO(mpratt): We could allow Realtime clock jumps here.
c.resetLocked("Extreme clock error.")
return
}
c.params = newParams
c.errorNS = errorNS
}
// Update runs the update step of the clock, updating its synchronization with
// the reference clock.
//
// Update returns timekeeping and true with the new timekeeping parameters if
// the clock is calibrated. Update should be called regularly to prevent the
// clock from getting significantly out of sync from the reference clock.
//
// The returned timekeeping parameters are invalidated on the next call to
// Update.
func (c *CalibratedClock) Update() (Parameters, bool) {
c.mu.Lock()
defer c.mu.Unlock()
if err := c.ref.Sample(); err != nil {
c.resetLocked("Unable to update calibrated clock: %v.", err)
return Parameters{}, false
}
oldest, newest, ok := c.ref.Range()
if !ok {
// Not ready yet.
return Parameters{}, false
}
minCount := uint64(newest.before - oldest.after)
maxCount := uint64(newest.after - oldest.before)
refInterval := uint64(newest.ref - oldest.ref)
// freq hz = count / (interval ns) * (nsPerS ns) / (1 s)
nsPerS := uint64(time.Second.Nanoseconds())
minHz, ok := muldiv64(minCount, nsPerS, refInterval)
if !ok {
c.resetLocked("Unable to update calibrated clock: (%v - %v) * %v / %v overflows.", newest.before, oldest.after, nsPerS, refInterval)
return Parameters{}, false
}
maxHz, ok := muldiv64(maxCount, nsPerS, refInterval)
if !ok {
c.resetLocked("Unable to update calibrated clock: (%v - %v) * %v / %v overflows.", newest.after, oldest.before, nsPerS, refInterval)
return Parameters{}, false
}
c.updateParams(Parameters{
Frequency: (minHz + maxHz) / 2,
BaseRef: newest.ref,
BaseCycles: newest.after,
})
return c.params, true
}
// GetTime returns the current time based on the clock calibration.
func (c *CalibratedClock) GetTime() (int64, error) {
c.mu.RLock()
if !c.ready {
// Fallback to a syscall.
now, err := c.ref.Syscall()
c.mu.RUnlock()
return int64(now), err
}
now := c.ref.Cycles()
v, ok := c.params.ComputeTime(now)
if !ok {
// Something is seriously wrong with the clock. Try
// again with syscalls.
c.resetLocked("Time computation overflowed. params = %+v, now = %v.", c.params, now)
now, err := c.ref.Syscall()
c.mu.RUnlock()
return int64(now), err
}
c.mu.RUnlock()
return v, nil
}
// CalibratedClocks contains calibrated monotonic and realtime clocks.
//
// TODO(mpratt): We know that Linux runs the monotonic and realtime clocks at
// the same rate, so rather than tracking both individually, we could do one
// calibration for both clocks.
type CalibratedClocks struct {
// monotonic is the clock tracking the system monotonic clock.
monotonic *CalibratedClock
// realtime is the realtime equivalent of monotonic.
realtime *CalibratedClock
}
// NewCalibratedClocks creates a CalibratedClocks.
func NewCalibratedClocks() *CalibratedClocks {
return &CalibratedClocks{
monotonic: NewCalibratedClock(Monotonic),
realtime: NewCalibratedClock(Realtime),
}
}
// Update implements Clocks.Update.
func (c *CalibratedClocks) Update() (Parameters, bool, Parameters, bool) {
monotonicParams, monotonicOk := c.monotonic.Update()
realtimeParams, realtimeOk := c.realtime.Update()
return monotonicParams, monotonicOk, realtimeParams, realtimeOk
}
// GetTime implements Clocks.GetTime.
func (c *CalibratedClocks) GetTime(id ClockID) (int64, error) {
switch id {
case Monotonic:
return c.monotonic.GetTime()
case Realtime:
return c.realtime.GetTime()
default:
return 0, linuxerr.EINVAL
}
}
|