File: mount.go

package info (click to toggle)
golang-gvisor-gvisor 0.0~20240729.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 21,276 kB
  • sloc: asm: 3,361; ansic: 1,197; cpp: 348; makefile: 92; python: 89; sh: 83
file content (1595 lines) | stat: -rw-r--r-- 48,981 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package vfs

import (
	"bytes"
	"fmt"
	"math"
	"sort"
	"strings"

	"gvisor.dev/gvisor/pkg/abi/linux"
	"gvisor.dev/gvisor/pkg/atomicbitops"
	"gvisor.dev/gvisor/pkg/cleanup"
	"gvisor.dev/gvisor/pkg/context"
	"gvisor.dev/gvisor/pkg/errors/linuxerr"
	"gvisor.dev/gvisor/pkg/refs"
	"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
)

// MountMax is the maximum number of mounts allowed. In Linux this can be
// configured by the user at /proc/sys/fs/mount-max, but the default is
// 100,000. We set the gVisor limit to 10,000.
const (
	MountMax     = 10000
	nsfsName     = "nsfs"
	cgroupFsName = "cgroup"
)

// A Mount is a replacement of a Dentry (Mount.key.point) from one Filesystem
// (Mount.key.parent.fs) with a Dentry (Mount.root) from another Filesystem
// (Mount.fs), which applies to path resolution in the context of a particular
// Mount (Mount.key.parent).
//
// Mounts are reference-counted. Unless otherwise specified, all Mount methods
// require that a reference is held.
//
// Mount and Filesystem are distinct types because it's possible for a single
// Filesystem to be mounted at multiple locations and/or in multiple mount
// namespaces.
//
// Mount is analogous to Linux's struct mount. (gVisor does not distinguish
// between struct mount and struct vfsmount.)
//
// +stateify savable
type Mount struct {
	// vfs, fs, root are immutable. References are held on fs and root.
	// Note that for a disconnected mount, root may be nil.
	//
	// Invariant: if not nil, root belongs to fs.
	vfs  *VirtualFilesystem
	fs   *Filesystem
	root *Dentry

	// ID is the immutable mount ID.
	ID uint64

	// Flags contains settings as specified for mount(2), e.g. MS_NOEXEC, except
	// for MS_RDONLY which is tracked in "writers". flags is protected by
	// VirtualFilesystem.mountMu.
	flags MountFlags

	// key is protected by VirtualFilesystem.mountMu and
	// VirtualFilesystem.mounts.seq, and may be nil. References are held on
	// key.parent and key.point if they are not nil.
	//
	// Invariant: key.parent != nil iff key.point != nil. key.point belongs to
	// key.parent.fs.
	key mountKey `state:".(VirtualDentry)"`

	// ns is the namespace in which this Mount was mounted. ns is protected by
	// VirtualFilesystem.mountMu.
	ns *MountNamespace

	// The lower 63 bits of refs are a reference count. The MSB of refs is set
	// if the Mount has been eagerly umounted, as by umount(2) without the
	// MNT_DETACH flag. refs is accessed using atomic memory operations.
	refs atomicbitops.Int64

	// children is the set of all Mounts for which Mount.key.parent is this
	// Mount. children is protected by VirtualFilesystem.mountMu.
	children map[*Mount]struct{}

	// isShared indicates this mount has the MS_SHARED propagation type.
	isShared bool

	// sharedEntry is an entry in a circular list (ring) of mounts in a shared
	// peer group.
	sharedEntry mountEntry

	// followerList is a list of mounts which has this mount as its leader.
	followerList followerList

	// followerEntry is an entry in a followerList.
	followerEntry

	// leader is the mount that this mount receives propagation events from.
	leader *Mount

	// groupID is the ID for this mount's shared peer group. If the mount is not
	// in a peer group, this is 0.
	groupID uint32

	// umounted is true if VFS.umountRecursiveLocked() has been called on this
	// Mount. VirtualFilesystem does not hold a reference on Mounts for which
	// umounted is true. umounted is protected by VirtualFilesystem.mountMu.
	umounted bool

	// locked is true if the mount cannot be unmounted in the current mount
	// namespace. It is analogous to MNT_LOCKED in Linux.
	locked bool

	// The lower 63 bits of writers is the number of calls to
	// Mount.CheckBeginWrite() that have not yet been paired with a call to
	// Mount.EndWrite(). The MSB of writers is set if MS_RDONLY is in effect.
	// writers is accessed using atomic memory operations.
	writers atomicbitops.Int64
}

func newMount(vfs *VirtualFilesystem, fs *Filesystem, root *Dentry, mntns *MountNamespace, opts *MountOptions) *Mount {
	mnt := &Mount{
		ID:       vfs.lastMountID.Add(1),
		flags:    opts.Flags,
		vfs:      vfs,
		fs:       fs,
		root:     root,
		ns:       mntns,
		locked:   opts.Locked,
		isShared: false,
		refs:     atomicbitops.FromInt64(1),
	}
	if opts.ReadOnly {
		mnt.setReadOnlyLocked(true)
	}
	mnt.sharedEntry.Init(mnt)
	refs.Register(mnt)
	return mnt
}

// Options returns a copy of the MountOptions currently applicable to mnt.
func (mnt *Mount) Options() MountOptions {
	mnt.vfs.lockMounts()
	defer mnt.vfs.unlockMounts(context.Background())
	return MountOptions{
		Flags:    mnt.flags,
		ReadOnly: mnt.ReadOnlyLocked(),
	}
}

// setMountOptions sets mnt's options to the given opts.
//
// Preconditions:
//   - vfs.mountMu must be locked.
func (mnt *Mount) setMountOptions(opts *MountOptions) error {
	if opts == nil {
		return linuxerr.EINVAL
	}
	if err := mnt.setReadOnlyLocked(opts.ReadOnly); err != nil {
		return err
	}
	mnt.flags = opts.Flags
	return nil
}

// MountFlags returns a bit mask that indicates mount options.
func (mnt *Mount) MountFlags() uint64 {
	mnt.vfs.lockMounts()
	defer mnt.vfs.unlockMounts(context.Background())
	var flags uint64
	if mnt.flags.NoExec {
		flags |= linux.ST_NOEXEC
	}
	if mnt.flags.NoATime {
		flags |= linux.ST_NOATIME
	}
	if mnt.flags.NoDev {
		flags |= linux.ST_NODEV
	}
	if mnt.flags.NoSUID {
		flags |= linux.ST_NOSUID
	}
	if mnt.ReadOnlyLocked() {
		flags |= linux.ST_RDONLY
	}
	return flags
}

func (mnt *Mount) isFollower() bool {
	return mnt.leader != nil
}

func (mnt *Mount) neverConnected() bool {
	return mnt.ns == nil
}

// coveringMount returns a mount that completely covers mnt if it exists and nil
// otherwise. A mount that covers another is one that is the only child of its
// parent and whose mountpoint is its parent's root.
func (mnt *Mount) coveringMount() *Mount {
	if len(mnt.children) != 1 {
		return nil
	}
	// Get the child from the children map.
	var child *Mount
	for child = range mnt.children {
		break
	}
	if child.point() != mnt.root {
		return nil
	}
	return child
}

// validInMountNS checks if the mount is valid in the current mount namespace. This includes
// checking if has previously been unmounted. It is analogous to fs/namespace.c:check_mnt() in
// Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) validInMountNS(ctx context.Context, mnt *Mount) bool {
	if mntns := MountNamespaceFromContext(ctx); mntns != nil {
		vfs.delayDecRef(mntns)
		return mnt.ns == mntns && !mnt.umounted
	}
	return false
}

// NewFilesystem creates a new filesystem object not yet associated with any
// mounts. It can be installed into the filesystem tree with ConnectMountAt.
// Note that only the filesystem-specific mount options from opts are used by
// this function, mount flags are ignored. To set mount flags, pass them to a
// corresponding ConnectMountAt.
func (vfs *VirtualFilesystem) NewFilesystem(ctx context.Context, creds *auth.Credentials, source, fsTypeName string, opts *MountOptions) (*Filesystem, *Dentry, error) {
	rft := vfs.getFilesystemType(fsTypeName)
	if rft == nil {
		return nil, nil, linuxerr.ENODEV
	}
	if !opts.GetFilesystemOptions.InternalMount && !rft.opts.AllowUserMount {
		return nil, nil, linuxerr.ENODEV
	}
	return rft.fsType.GetFilesystem(ctx, vfs, creds, source, opts.GetFilesystemOptions)
}

// NewDisconnectedMount returns a Mount representing fs with the given root
// (which may be nil). The new Mount is not associated with any MountNamespace
// and is not connected to any other Mounts. References are taken on fs and
// root.
func (vfs *VirtualFilesystem) NewDisconnectedMount(fs *Filesystem, root *Dentry, opts *MountOptions) *Mount {
	fs.IncRef()
	if root != nil {
		root.IncRef()
	}
	return newMount(vfs, fs, root, nil /* mntns */, opts)
}

// MountDisconnected creates a Filesystem configured by the given arguments,
// then returns a Mount representing it. The new Mount is not associated with
// any MountNamespace and is not connected to any other Mounts.
func (vfs *VirtualFilesystem) MountDisconnected(ctx context.Context, creds *auth.Credentials, source string, fsTypeName string, opts *MountOptions) (*Mount, error) {
	fs, root, err := vfs.NewFilesystem(ctx, creds, source, fsTypeName, opts)
	if err != nil {
		return nil, err
	}
	return newMount(vfs, fs, root, nil /* mntns */, opts), nil
}

// attachTreeLocked attaches the mount tree at mnt to mp and propagates the mount to mp.mount's
// peers and followers. This method consumes the reference on mp. It is analogous to
// fs/namespace.c:attach_recursive_mnt() in Linux. The mount point mp must have its dentry locked
// before calling attachTreeLocked.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) attachTreeLocked(ctx context.Context, mnt *Mount, mp VirtualDentry) error {
	cleanup := cleanup.Make(func() {
		vfs.cleanupGroupIDs(mnt.submountsLocked()) // +checklocksforce
		mp.dentry.mu.Unlock()
		vfs.delayDecRef(mp)
	})
	defer cleanup.Clean()
	// This is equivalent to checking for SB_NOUSER in Linux, which is set on all
	// anon mounts and sentry-internal filesystems like pipefs.
	if mp.mount.neverConnected() {
		return linuxerr.EINVAL
	}
	defer func() { mp.mount.ns.pending = 0 }()
	if err := mp.mount.ns.checkMountCount(ctx, mnt); err != nil {
		return err
	}

	var (
		propMnts map[*Mount]struct{}
		err      error
	)
	if mp.mount.isShared {
		if err := vfs.allocMountGroupIDs(mnt, true); err != nil {
			return err
		}
		propMnts, err = vfs.doPropagation(ctx, mnt, mp)
		if err != nil {
			for pmnt := range propMnts {
				if !pmnt.parent().neverConnected() {
					pmnt.parent().ns.pending -= pmnt.countSubmountsLocked()
				}
				vfs.abortUncommitedMount(ctx, pmnt)
			}
			return err
		}
	}
	cleanup.Release()

	if mp.mount.isShared {
		for _, m := range mnt.submountsLocked() {
			m.isShared = true
		}
	}
	vfs.mounts.seq.BeginWrite()
	vfs.connectLocked(mnt, mp, mp.mount.ns)
	vfs.mounts.seq.EndWrite()
	mp.dentry.mu.Unlock()
	vfs.commitChildren(ctx, mnt)

	var owner *auth.UserNamespace
	if mntns := MountNamespaceFromContext(ctx); mntns != nil {
		owner = mntns.Owner
		mntns.DecRef(ctx)
	}
	for pmnt := range propMnts {
		vfs.commitMount(ctx, pmnt)
		if pmnt.parent().ns.Owner != owner {
			vfs.lockMountTree(pmnt)
		}
		pmnt.locked = false
	}
	return nil
}

// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) lockMountTree(mnt *Mount) {
	for _, m := range mnt.submountsLocked() {
		// TODO(b/315839347): Add equivalents for MNT_LOCK_ATIME,
		// MNT_LOCK_READONLY, etc.
		m.locked = true
	}
}

// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) mountHasLockedChildren(mnt *Mount, vd VirtualDentry) bool {
	for child := range mnt.children {
		mp := child.getKey()
		if !mp.mount.fs.Impl().IsDescendant(vd, mp) {
			continue
		}
		if child.locked {
			return true
		}
	}
	return false
}

// ConnectMountAt connects mnt at the path represented by target.
//
// Preconditions: mnt must be disconnected.
func (vfs *VirtualFilesystem) ConnectMountAt(ctx context.Context, creds *auth.Credentials, mnt *Mount, target *PathOperation) error {
	// We can't hold vfs.mountMu while calling FilesystemImpl methods due to
	// lock ordering.
	vd, err := vfs.GetDentryAt(ctx, creds, target, &GetDentryOptions{})
	if err != nil {
		return err
	}
	vfs.lockMounts()
	defer vfs.unlockMounts(ctx)
	mp, err := vfs.lockMountpoint(vd)
	if err != nil {
		return err
	}
	if mp.mount.neverConnected() || mp.mount.umounted {
		mp.dentry.mu.Unlock()
		vfs.delayDecRef(mp)
		return linuxerr.EINVAL
	}
	return vfs.attachTreeLocked(ctx, mnt, mp)
}

// lockMountpoint returns VirtualDentry with a locked Dentry. If vd is a
// mountpoint, the method returns a VirtualDentry with a locked Dentry that is
// the top most mount stacked on that Dentry. This method consumes a reference
// on vd and returns a VirtualDentry with an extra reference. It is analogous to
// fs/namespace.c:do_lock_mount() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) lockMountpoint(vd VirtualDentry) (VirtualDentry, error) {
	vd.dentry.mu.Lock()
	for {
		if vd.mount.umounted || vd.dentry.dead {
			vd.dentry.mu.Unlock()
			vfs.delayDecRef(vd)
			return VirtualDentry{}, linuxerr.ENOENT
		}
		// vd might have been mounted over between vfs.GetDentryAt() and
		// vfs.mountMu.Lock().
		if !vd.dentry.isMounted() {
			break
		}
		nextmnt := vfs.mounts.Lookup(vd.mount, vd.dentry)
		if nextmnt == nil {
			break
		}
		// It's possible that nextmnt has been umounted but not disconnected,
		// in which case vfs no longer holds a reference on it, and the last
		// reference may be concurrently dropped even though we're holding
		// vfs.mountMu.
		if !nextmnt.tryIncMountedRef() {
			break
		}
		// This can't fail since we're holding vfs.mountMu.
		nextmnt.root.IncRef()
		vd.dentry.mu.Unlock()
		vfs.delayDecRef(vd)
		vd = VirtualDentry{
			mount:  nextmnt,
			dentry: nextmnt.root,
		}
		vd.dentry.mu.Lock()
	}
	return vd, nil
}

// CloneMountAt returns a new mount with the same fs, specified root and
// mount options.  If mount options are nil, mnt's options are copied. The clone
// is added to mnt's peer group if mnt is shared. If not the clone is in a
// shared peer group by itself.
func (vfs *VirtualFilesystem) CloneMountAt(mnt *Mount, root *Dentry, mopts *MountOptions) (*Mount, error) {
	vfs.lockMounts()
	defer vfs.unlockMounts(context.Background())
	return vfs.cloneMount(mnt, root, mopts, makeSharedClone)
}

// cloneMount returns a new mount with mnt.fs as the filesystem and root as the
// root, with a propagation type specified by cloneType. The returned mount has
// an extra reference. If mopts is nil, use the options found in mnt.
// This method is analogous to fs/namespace.c:clone_mnt() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) cloneMount(mnt *Mount, root *Dentry, mopts *MountOptions, cloneType int) (*Mount, error) {
	opts := mopts
	if opts == nil {
		opts = &MountOptions{
			Flags:    mnt.flags,
			ReadOnly: mnt.ReadOnlyLocked(),
		}
	}
	clone := vfs.NewDisconnectedMount(mnt.fs, root, opts)
	if cloneType&(makeFollowerClone|makePrivateClone|sharedToFollowerClone) != 0 {
		clone.groupID = 0
	} else {
		clone.groupID = mnt.groupID
	}
	if cloneType&makeSharedClone != 0 && clone.groupID == 0 {
		if err := vfs.allocateGroupID(clone); err != nil {
			vfs.delayDecRef(clone)
			return nil, err
		}
	}
	clone.isShared = mnt.isShared
	clone.locked = mnt.locked
	if cloneType&makeFollowerClone != 0 || (cloneType&sharedToFollowerClone != 0 && mnt.isShared) {
		mnt.followerList.PushFront(clone)
		clone.leader = mnt
		clone.isShared = false
	} else if cloneType&makePrivateClone == 0 {
		if cloneType&makeSharedClone != 0 || mnt.isShared {
			mnt.sharedEntry.Add(&clone.sharedEntry)
		}
		if mnt.isFollower() {
			mnt.leader.followerList.InsertAfter(mnt, clone)
		}
		clone.leader = mnt.leader
	} else {
		clone.isShared = false
	}
	if cloneType&makeSharedClone != 0 {
		clone.isShared = true
	}
	return clone, nil
}

type cloneTreeNode struct {
	prevMount   *Mount
	parentMount *Mount
}

// cloneMountTree creates a copy of mnt's tree with the specified root
// dentry at root. The new descendants are added to mnt's children list but are
// not connected with call to connectLocked.
// `cloneFunc` is a callback that is executed for each cloned mount.
// This method is analogous to fs/namespace.c:copy_tree() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) cloneMountTree(ctx context.Context, mnt *Mount, root *Dentry, cloneType int, cloneFunc func(ctx context.Context, oldmnt, newMnt *Mount)) (*Mount, error) {
	clone, err := vfs.cloneMount(mnt, root, nil, cloneType)
	if err != nil {
		return nil, err
	}
	if cloneFunc != nil {
		cloneFunc(ctx, mnt, clone)
	}
	queue := []cloneTreeNode{{mnt, clone}}
	for len(queue) != 0 {
		p := queue[len(queue)-1]
		queue = queue[:len(queue)-1]
		for c := range p.prevMount.children {
			if mp := c.getKey(); p.prevMount == mnt && !mp.mount.fs.Impl().IsDescendant(VirtualDentry{mnt, root}, mp) {
				continue
			}
			m, err := vfs.cloneMount(c, c.root, nil, cloneType)
			if err != nil {
				vfs.abortUncommitedMount(ctx, clone)
				return nil, err
			}
			mp := VirtualDentry{
				mount:  p.parentMount,
				dentry: c.point(),
			}
			mp.IncRef()
			m.setKey(mp)
			if p.parentMount.children == nil {
				p.parentMount.children = make(map[*Mount]struct{})
			}
			p.parentMount.children[m] = struct{}{}
			if len(c.children) != 0 {
				queue = append(queue, cloneTreeNode{c, m})
			}
			if cloneFunc != nil {
				cloneFunc(ctx, c, m)
			}
		}
	}
	return clone, nil
}

// BindAt creates a clone of the source path's parent mount and mounts it at
// the target path. The new mount's root dentry is one pointed to by the source
// path.
func (vfs *VirtualFilesystem) BindAt(ctx context.Context, creds *auth.Credentials, source, target *PathOperation, recursive bool) error {
	sourceVd, err := vfs.GetDentryAt(ctx, creds, source, &GetDentryOptions{})
	if err != nil {
		return err
	}
	defer sourceVd.DecRef(ctx)
	targetVd, err := vfs.GetDentryAt(ctx, creds, target, &GetDentryOptions{})
	if err != nil {
		return err
	}

	vfs.lockMounts()
	defer vfs.unlockMounts(ctx)
	mp, err := vfs.lockMountpoint(targetVd)
	if err != nil {
		return err
	}
	cleanup := cleanup.Make(func() {
		mp.dentry.mu.Unlock()
		vfs.delayDecRef(mp) // +checklocksforce
	})
	defer cleanup.Clean()
	// Namespace mounts can be binded to other mount points.
	fsName := sourceVd.mount.Filesystem().FilesystemType().Name()
	if !vfs.validInMountNS(ctx, sourceVd.mount) && fsName != nsfsName && fsName != cgroupFsName {
		return linuxerr.EINVAL
	}
	if !vfs.validInMountNS(ctx, mp.mount) {
		return linuxerr.EINVAL
	}

	var clone *Mount
	if recursive {
		clone, err = vfs.cloneMountTree(ctx, sourceVd.mount, sourceVd.dentry, 0, nil)
	} else {
		if vfs.mountHasLockedChildren(sourceVd.mount, sourceVd) {
			return linuxerr.EINVAL
		}
		clone, err = vfs.cloneMount(sourceVd.mount, sourceVd.dentry, nil, 0)
	}
	if err != nil {
		return err
	}
	cleanup.Release()

	vfs.delayDecRef(clone)
	clone.locked = false
	if err := vfs.attachTreeLocked(ctx, clone, mp); err != nil {
		vfs.abortUncomittedChildren(ctx, clone)
		return err
	}
	return nil
}

// RemountAt changes the mountflags and data of an existing mount without having to unmount and remount the filesystem.
func (vfs *VirtualFilesystem) RemountAt(ctx context.Context, creds *auth.Credentials, pop *PathOperation, opts *MountOptions) error {
	vd, err := vfs.getMountpoint(ctx, creds, pop)
	if err != nil {
		return err
	}
	defer vd.DecRef(ctx)
	vfs.lockMounts()
	defer vfs.unlockMounts(ctx)
	mnt := vd.Mount()
	if !vfs.validInMountNS(ctx, mnt) {
		return linuxerr.EINVAL
	}
	return mnt.setMountOptions(opts)
}

// MountAt creates and mounts a Filesystem configured by the given arguments.
// The VirtualFilesystem will hold a reference to the Mount until it is
// unmounted.
//
// This method returns the mounted Mount without a reference, for convenience
// during VFS setup when there is no chance of racing with unmount.
func (vfs *VirtualFilesystem) MountAt(ctx context.Context, creds *auth.Credentials, source string, target *PathOperation, fsTypeName string, opts *MountOptions) (*Mount, error) {
	mnt, err := vfs.MountDisconnected(ctx, creds, source, fsTypeName, opts)
	if err != nil {
		return nil, err
	}
	defer mnt.DecRef(ctx)
	if err := vfs.ConnectMountAt(ctx, creds, mnt, target); err != nil {
		return nil, err
	}
	return mnt, nil
}

// UmountAt removes the Mount at the given path.
func (vfs *VirtualFilesystem) UmountAt(ctx context.Context, creds *auth.Credentials, pop *PathOperation, opts *UmountOptions) error {
	if opts.Flags&^(linux.MNT_FORCE|linux.MNT_DETACH) != 0 {
		return linuxerr.EINVAL
	}

	// MNT_FORCE is currently unimplemented except for the permission check.
	// Force unmounting specifically requires CAP_SYS_ADMIN in the root user
	// namespace, and not in the owner user namespace for the target mount. See
	// fs/namespace.c:SYSCALL_DEFINE2(umount, ...)
	if opts.Flags&linux.MNT_FORCE != 0 && creds.HasCapabilityIn(linux.CAP_SYS_ADMIN, creds.UserNamespace.Root()) {
		return linuxerr.EPERM
	}
	vd, err := vfs.getMountpoint(ctx, creds, pop)
	if err != nil {
		return err
	}
	defer vd.DecRef(ctx)

	vfs.lockMounts()
	defer vfs.unlockMounts(ctx)
	if vd.mount.locked {
		return linuxerr.EINVAL
	}
	if !vfs.validInMountNS(ctx, vd.mount) {
		return linuxerr.EINVAL
	}
	if vd.mount == vd.mount.ns.root {
		return linuxerr.EINVAL
	}

	if opts.Flags&linux.MNT_DETACH == 0 && vfs.arePropMountsBusy(vd.mount) {
		return linuxerr.EBUSY
	}

	// TODO(gvisor.dev/issue/1035): Linux special-cases umount of the caller's
	// root, which we don't implement yet (we'll just fail it since the caller
	// holds a reference on it).
	vfs.umountTreeLocked(vd.mount, &umountRecursiveOptions{
		eager:               opts.Flags&linux.MNT_DETACH == 0,
		disconnectHierarchy: true,
		propagate:           true,
	})
	return nil
}

// mountHasExpectedRefs checks that mnt has the correct number of references
// before a umount. It is analogous to fs/pnode.c:do_refcount_check().
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) mountHasExpectedRefs(mnt *Mount) bool {
	expectedRefs := int64(1)
	if !mnt.umounted {
		expectedRefs++
	}
	if mnt.coveringMount() != nil {
		expectedRefs++
	}
	return mnt.refs.Load()&^math.MinInt64 == expectedRefs // mask out MSB
}

// +stateify savable
type umountRecursiveOptions struct {
	// If eager is true, ensure that future calls to Mount.tryIncMountedRef()
	// on umounted mounts fail.
	//
	// eager is analogous to Linux's UMOUNT_SYNC.
	eager bool

	// If disconnectHierarchy is true, Mounts that are umounted hierarchically
	// should be disconnected from their parents. (Mounts whose parents are not
	// umounted, which in most cases means the Mount passed to the initial call
	// to umountRecursiveLocked, are unconditionally disconnected for
	// consistency with Linux.)
	//
	// disconnectHierarchy is analogous to Linux's !UMOUNT_CONNECTED.
	disconnectHierarchy bool

	// If propagate is true, mounts located at the same point on the mount's
	// parent's peers and follows will also be umounted if they do not have any
	// children.
	//
	// propagate is analogous to Linux's UMOUNT_PROPAGATE.
	propagate bool
}

// shouldUmount returns if this mount should be disconnected from its parent.
// It is analogous to fs/namespace.c:disconnect_mount() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) shouldUmount(mnt *Mount, opts *umountRecursiveOptions) bool {
	// Always disconnect when it's not a lazy unmount.
	if opts.eager {
		return true
	}
	// If a mount does not have a parent, it won't be disconnected but will be
	// DecRef-ed.
	if mnt.parent() == nil {
		return true
	}
	// Always unmount if the parent is not marked as unmounted.
	if !mnt.parent().umounted {
		return true
	}
	// If the parent is marked as unmounted, we can only unmount is
	// UMOUNT_CONNECTED is false.
	if !opts.disconnectHierarchy {
		return false
	}
	if mnt.locked {
		return false
	}
	return true
}

// umountTreeLocked marks mnt and its descendants as umounted.
//
// umountTreeLocked is analogous to Linux's fs/namespace.c:umount_tree().
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) umountTreeLocked(mnt *Mount, opts *umountRecursiveOptions) {
	if opts.propagate {
		vfs.unlockPropagationMounts(mnt)
	}
	umountMnts := mnt.submountsLocked()
	for _, mnt := range umountMnts {
		vfs.umount(mnt)
	}
	if opts.propagate {
		umountMnts = append(umountMnts, vfs.propagateUmount(umountMnts)...)
	}

	vfs.mounts.seq.BeginWrite()
	for _, mnt := range umountMnts {
		if opts.eager {
			for {
				refs := mnt.refs.Load()
				if refs < 0 {
					break
				}
				if mnt.refs.CompareAndSwap(refs, refs|math.MinInt64) {
					break
				}
			}
		}
		if mnt.parent() != nil {
			vfs.delayDecRef(mnt.getKey())
			if vfs.shouldUmount(mnt, opts) {
				vfs.disconnectLocked(mnt)
			} else {
				// Restore mnt in it's parent children list with a reference, but leave
				// it marked as unmounted. These partly unmounted mounts are cleaned up
				// in vfs.forgetDeadMountpoints and Mount.destroy. We keep the extra
				// reference on the mount but remove a reference on the mount point so
				// that mount.Destroy is called when there are no other references on
				// the parent.
				mnt.IncRef()
				mnt.parent().children[mnt] = struct{}{}
			}
		}
		vfs.setPropagation(mnt, linux.MS_PRIVATE)
	}
	vfs.mounts.seq.EndWrite()
}

// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) umount(mnt *Mount) {
	if !mnt.umounted {
		mnt.umounted = true
		vfs.delayDecRef(mnt)
	}
	if parent := mnt.parent(); parent != nil {
		delete(parent.children, mnt)
	}
}

// changeMountpoint disconnects mnt from its current mount point and connects
// it to mp. It must be called from a vfs.mounts.seq writer critical section.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) changeMountpoint(mnt *Mount, mp VirtualDentry) {
	mp.dentry.mu.Lock()
	vfs.delayDecRef(vfs.disconnectLocked(mnt))
	vfs.delayDecRef(mnt)
	mp.IncRef()
	vfs.connectLocked(mnt, mp, mp.mount.ns)
	mp.dentry.mu.Unlock()
}

// connectLocked makes vd the mount parent/point for mnt. It consumes
// references held by vd.
//
// Preconditions:
//   - vfs.mountMu must be locked.
//   - vfs.mounts.seq must be in a writer critical section.
//   - d.mu must be locked.
//   - mnt.parent() == nil or mnt.parent().children doesn't contain mnt.
//     i.e. mnt must not already be connected.
func (vfs *VirtualFilesystem) connectLocked(mnt *Mount, vd VirtualDentry, mntns *MountNamespace) {
	if checkInvariants {
		if mnt.parent() != nil && mnt.parent().children != nil {
			if _, ok := mnt.parent().children[mnt]; ok {
				panic("VFS.connectLocked called on connected mount")
			}
		}
	}
	mnt.IncRef() // dropped by vfs.umount().
	mnt.setKey(vd)
	if vd.mount.children == nil {
		vd.mount.children = make(map[*Mount]struct{})
	}
	vd.mount.children[mnt] = struct{}{}
	vd.dentry.mounts.Add(1)
	mnt.ns = mntns
	mntns.mountpoints[vd.dentry]++
	mntns.mounts++
	vfs.mounts.insertSeqed(mnt)
	vfsmpmounts, ok := vfs.mountpoints[vd.dentry]
	if !ok {
		vfsmpmounts = make(map[*Mount]struct{})
		vfs.mountpoints[vd.dentry] = vfsmpmounts
	}
	vfsmpmounts[mnt] = struct{}{}
	vfs.maybeResolveMountPromise(vd)
}

// disconnectLocked makes vd have no mount parent/point and returns its old
// mount parent/point with a reference held.
//
// Preconditions:
//   - vfs.mountMu must be locked.
//   - vfs.mounts.seq must be in a writer critical section.
//   - mnt.parent() != nil.
func (vfs *VirtualFilesystem) disconnectLocked(mnt *Mount) VirtualDentry {
	vd := mnt.getKey()
	if checkInvariants {
		if vd.mount == nil {
			panic("VFS.disconnectLocked called on disconnected mount")
		}
		if mnt.ns.mountpoints[vd.dentry] == 0 {
			panic("VFS.disconnectLocked called on dentry with zero mountpoints.")
		}
		if mnt.ns.mounts == 0 {
			panic("VFS.disconnectLocked called on namespace with zero mounts.")
		}
	}
	delete(vd.mount.children, mnt)
	vd.dentry.mounts.Add(math.MaxUint32) // -1
	mnt.ns.mountpoints[vd.dentry]--
	mnt.ns.mounts--
	if mnt.ns.mountpoints[vd.dentry] == 0 {
		delete(mnt.ns.mountpoints, vd.dentry)
	}
	vfs.mounts.removeSeqed(mnt)
	mnt.setKey(VirtualDentry{}) // Clear mnt.key.
	vfsmpmounts := vfs.mountpoints[vd.dentry]
	delete(vfsmpmounts, mnt)
	if len(vfsmpmounts) == 0 {
		delete(vfs.mountpoints, vd.dentry)
	}
	return vd
}

// tryIncMountedRef increments mnt's reference count and returns true. If mnt's
// reference count is already zero, or has been eagerly umounted,
// tryIncMountedRef does nothing and returns false.
//
// tryIncMountedRef does not require that a reference is held on mnt.
func (mnt *Mount) tryIncMountedRef() bool {
	for {
		r := mnt.refs.Load()
		if r <= 0 { // r < 0 => MSB set => eagerly unmounted
			return false
		}
		if mnt.refs.CompareAndSwap(r, r+1) {
			if mnt.LogRefs() {
				refs.LogTryIncRef(mnt, r+1)
			}
			return true
		}
	}
}

// IncRef increments mnt's reference count.
func (mnt *Mount) IncRef() {
	// In general, negative values for mnt.refs are valid because the MSB is
	// the eager-unmount bit.
	r := mnt.refs.Add(1)
	if mnt.LogRefs() {
		refs.LogIncRef(mnt, r)
	}
}

// DecRef decrements mnt's reference count.
func (mnt *Mount) DecRef(ctx context.Context) {
	r := mnt.refs.Add(-1)
	if mnt.LogRefs() {
		refs.LogDecRef(mnt, r)
	}
	if r&^math.MinInt64 == 0 { // mask out MSB
		refs.Unregister(mnt)
		mnt.destroy(ctx)
	}
}

func (mnt *Mount) destroy(ctx context.Context) {
	mnt.vfs.lockMounts()
	defer mnt.vfs.unlockMounts(ctx)
	if mnt.parent() != nil {
		mnt.vfs.mounts.seq.BeginWrite()
		vd := mnt.vfs.disconnectLocked(mnt)
		if vd.Ok() {
			mnt.vfs.delayDecRef(vd)
		}
		mnt.vfs.mounts.seq.EndWrite()
	}

	// Cleanup any leftover children. The mount point has already been decref'd in
	// umount so we just need to clean up the actual mounts.
	if len(mnt.children) != 0 {
		mnt.vfs.mounts.seq.BeginWrite()
		for child := range mnt.children {
			if checkInvariants {
				if !child.umounted {
					panic("children of a mount that has no references should already be marked as unmounted.")
				}
			}
			mnt.vfs.disconnectLocked(child)
			mnt.vfs.delayDecRef(child)
		}
		mnt.vfs.mounts.seq.EndWrite()
	}

	if mnt.root != nil {
		mnt.vfs.delayDecRef(mnt.root)
	}
	mnt.vfs.delayDecRef(mnt.fs)
}

// RefType implements refs.CheckedObject.Type.
func (mnt *Mount) RefType() string {
	return "vfs.Mount"
}

// LeakMessage implements refs.CheckedObject.LeakMessage.
func (mnt *Mount) LeakMessage() string {
	return fmt.Sprintf("[vfs.Mount %p] reference count of %d instead of 0", mnt, mnt.refs.Load())
}

// LogRefs implements refs.CheckedObject.LogRefs.
//
// This should only be set to true for debugging purposes, as it can generate an
// extremely large amount of output and drastically degrade performance.
func (mnt *Mount) LogRefs() bool {
	return false
}

// getMountAt returns the last Mount in the stack mounted at (mnt, d). It takes
// a reference on the returned Mount. If (mnt, d) is not a mount point,
// getMountAt returns nil.
//
// getMountAt is analogous to Linux's fs/namei.c:follow_mount().
//
// Preconditions: References are held on mnt and d.
func (vfs *VirtualFilesystem) getMountAt(ctx context.Context, mnt *Mount, d *Dentry) *Mount {
	// The first mount is special-cased:
	//
	//	- The caller is assumed to have checked d.isMounted() already. (This
	//		isn't a precondition because it doesn't matter for correctness.)
	//
	//	- We return nil, instead of mnt, if there is no mount at (mnt, d).
	//
	//	- We don't drop the caller's references on mnt and d.
retryFirst:
	next := vfs.mounts.Lookup(mnt, d)
	if next == nil {
		return nil
	}
	if !next.tryIncMountedRef() {
		// Raced with umount.
		goto retryFirst
	}
	mnt = next
	d = next.root
	// We don't need to take Dentry refs anywhere in this function because
	// Mounts hold references on Mount.root, which is immutable.
	for d.isMounted() {
		next := vfs.mounts.Lookup(mnt, d)
		if next == nil {
			break
		}
		if !next.tryIncMountedRef() {
			// Raced with umount.
			continue
		}
		mnt.DecRef(ctx)
		mnt = next
		d = next.root
	}
	return mnt
}

// getMountpoint returns the top mount for the given path.
// If the path is not a mountpoint, it returns an error.
//
// The returned VirtualDentry has an extra reference.
func (vfs *VirtualFilesystem) getMountpoint(ctx context.Context, creds *auth.Credentials, pop *PathOperation) (VirtualDentry, error) {
	vd, err := vfs.GetDentryAt(ctx, creds, pop, &GetDentryOptions{})
	if err != nil {
		return VirtualDentry{}, err
	}
	// Linux passes the LOOKUP_MOUNPOINT flag to user_path_at in ksys_umount to
	// resolve to the toppmost mount in the stack located at the specified path.
	// vfs.GetMountAt() imitates this behavior. See fs/namei.c:user_path_at(...)
	// and fs/namespace.c:ksys_umount(...).
	if vd.dentry.isMounted() {
		if mnt := vfs.getMountAt(ctx, vd.mount, vd.dentry); mnt != nil {
			vd.mount.DecRef(ctx)
			vd.mount = mnt
		}
	} else if vd.dentry != vd.mount.root {
		vd.DecRef(ctx)
		return VirtualDentry{}, linuxerr.EINVAL
	}
	return vd, nil
}

// getMountpointAt returns the mount point for the stack of Mounts including
// mnt. It takes a reference on the returned VirtualDentry. If no such mount
// point exists (i.e. mnt is a root mount), getMountpointAt returns (nil, nil).
//
// Preconditions:
//   - References are held on mnt and root.
//   - vfsroot is not (mnt, mnt.root).
func (vfs *VirtualFilesystem) getMountpointAt(ctx context.Context, mnt *Mount, vfsroot VirtualDentry) VirtualDentry {
	// The first mount is special-cased:
	//
	//	- The caller must have already checked mnt against vfsroot.
	//
	//	- We return nil, instead of mnt, if there is no mount point for mnt.
	//
	//	- We don't drop the caller's reference on mnt.
retryFirst:
	epoch := vfs.mounts.seq.BeginRead()
	parent, point := mnt.parent(), mnt.point()
	if !vfs.mounts.seq.ReadOk(epoch) {
		goto retryFirst
	}
	if parent == nil {
		return VirtualDentry{}
	}
	if !parent.tryIncMountedRef() {
		// Raced with umount.
		goto retryFirst
	}
	if !point.TryIncRef() {
		// Since Mount holds a reference on Mount.key.point, this can only
		// happen due to a racing change to Mount.key.
		parent.DecRef(ctx)
		goto retryFirst
	}
	if !vfs.mounts.seq.ReadOk(epoch) {
		point.DecRef(ctx)
		parent.DecRef(ctx)
		goto retryFirst
	}
	mnt = parent
	d := point
	for {
		if mnt == vfsroot.mount && d == vfsroot.dentry {
			break
		}
		if d != mnt.root {
			break
		}
	retryNotFirst:
		epoch := vfs.mounts.seq.BeginRead()
		parent, point := mnt.parent(), mnt.point()
		if !vfs.mounts.seq.ReadOk(epoch) {
			goto retryNotFirst
		}
		if parent == nil {
			break
		}
		if !parent.tryIncMountedRef() {
			// Raced with umount.
			goto retryNotFirst
		}
		if !point.TryIncRef() {
			// Since Mount holds a reference on Mount.key.point, this can
			// only happen due to a racing change to Mount.key.
			parent.DecRef(ctx)
			goto retryNotFirst
		}
		if !vfs.mounts.seq.ReadOk(epoch) {
			point.DecRef(ctx)
			parent.DecRef(ctx)
			goto retryNotFirst
		}
		d.DecRef(ctx)
		mnt.DecRef(ctx)
		mnt = parent
		d = point
	}
	return VirtualDentry{mnt, d}
}

// PivotRoot makes location pointed to by newRootPop the root of the current
// namespace, and moves the current root to the location pointed to by
// putOldPop. If the operation is successful, it returns virtual dentries for
// the new root and the old root with an extra reference taken.
func (vfs *VirtualFilesystem) PivotRoot(ctx context.Context, creds *auth.Credentials, newRootPop *PathOperation, putOldPop *PathOperation) (newRoot, oldRoot VirtualDentry, err error) {
	newRoot, err = vfs.GetDentryAt(ctx, creds, newRootPop, &GetDentryOptions{CheckSearchable: true})
	if err != nil {
		return
	}
	defer newRoot.DecRef(ctx)

	oldRoot = RootFromContext(ctx)
	defer oldRoot.DecRef(ctx)

	putOldVd, err := vfs.GetDentryAt(ctx, creds, putOldPop, &GetDentryOptions{CheckSearchable: true})
	if err != nil {
		return
	}
	vfs.lockMounts()
	defer vfs.unlockMounts(ctx)
	putOld, err := vfs.lockMountpoint(putOldVd)
	if err != nil {
		return
	}
	vfs.delayDecRef(putOld)

	cleanup := cleanup.Make(func() { putOld.dentry.mu.Unlock() })
	defer cleanup.Clean()
	// Neither new_root nor put_old can be on the same mount as the current
	// root mount.
	if newRoot.mount == oldRoot.mount || putOld.mount == oldRoot.mount {
		return newRoot, oldRoot, linuxerr.EBUSY
	}
	// new_root must be a mountpoint.
	if newRoot.mount.root != newRoot.dentry {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	// new_root must not be locked.
	if newRoot.mount.locked {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	// put_old must be at or underneath new_root.
	if !vfs.isPathReachable(ctx, newRoot, putOld) {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	// the new root must be at or underneath the current root.
	if !vfs.isPathReachable(ctx, oldRoot, newRoot) {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	// The current root directory must be a mountpoint
	// (in the case it has been chrooted).
	if oldRoot.mount.root != oldRoot.dentry {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	// The current root and the new root must be in the context's mount namespace.
	if !vfs.validInMountNS(ctx, oldRoot.mount) || !vfs.validInMountNS(ctx, newRoot.mount) {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	// The current root and the new root cannot be on the rootfs mount.
	if oldRoot.mount.parent() == nil || newRoot.mount.parent() == nil {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	// Either the mount point at new_root, or the parent mount of that mount
	// point, has propagation type MS_SHARED.
	if newRootParent := newRoot.mount.parent(); newRoot.mount.isShared || newRootParent.isShared {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	// put_old is a mount point and has the propagation type MS_SHARED.
	if putOld.mount.root == putOld.dentry && putOld.mount.isShared {
		return newRoot, oldRoot, linuxerr.EINVAL
	}
	cleanup.Release()

	vfs.mounts.seq.BeginWrite()
	mp := vfs.disconnectLocked(newRoot.mount)
	vfs.delayDecRef(mp)
	rootMp := vfs.disconnectLocked(oldRoot.mount)
	if oldRoot.mount.locked {
		newRoot.mount.locked = true
		oldRoot.mount.locked = false
	}

	putOld.IncRef()
	vfs.connectLocked(oldRoot.mount, putOld, putOld.mount.ns)
	putOld.dentry.mu.Unlock()

	rootMp.dentry.mu.Lock()
	vfs.connectLocked(newRoot.mount, rootMp, rootMp.mount.ns)
	rootMp.dentry.mu.Unlock()
	vfs.mounts.seq.EndWrite()

	vfs.delayDecRef(newRoot.mount)
	vfs.delayDecRef(oldRoot.mount)

	newRoot.IncRef()
	oldRoot.IncRef()
	return
}

// SetMountReadOnly sets the mount as ReadOnly.
func (vfs *VirtualFilesystem) SetMountReadOnly(mnt *Mount, ro bool) error {
	vfs.lockMounts()
	defer vfs.unlockMounts(context.Background())
	return mnt.setReadOnlyLocked(ro)
}

// CheckBeginWrite increments the counter of in-progress write operations on
// mnt. If mnt is mounted MS_RDONLY, CheckBeginWrite does nothing and returns
// EROFS.
//
// If CheckBeginWrite succeeds, EndWrite must be called when the write
// operation is finished.
func (mnt *Mount) CheckBeginWrite() error {
	if mnt.writers.Add(1) < 0 {
		mnt.writers.Add(-1)
		return linuxerr.EROFS
	}
	return nil
}

// EndWrite indicates that a write operation signaled by a previous successful
// call to CheckBeginWrite has finished.
func (mnt *Mount) EndWrite() {
	mnt.writers.Add(-1)
}

// Preconditions: VirtualFilesystem.mountMu must be locked.
func (mnt *Mount) setReadOnlyLocked(ro bool) error {
	if oldRO := mnt.writers.Load() < 0; oldRO == ro {
		return nil
	}
	if ro {
		if !mnt.writers.CompareAndSwap(0, math.MinInt64) {
			return linuxerr.EBUSY
		}
		return nil
	}
	// Unset MSB without dropping any temporary increments from failed calls to
	// mnt.CheckBeginWrite().
	mnt.writers.Add(math.MinInt64)
	return nil
}

// ReadOnly returns true if mount is readonly.
func (mnt *Mount) ReadOnly() bool {
	mnt.vfs.lockMounts()
	defer mnt.vfs.unlockMounts(context.Background())
	return mnt.writers.Load() < 0
}

// ReadOnlyLocked returns true if mount is readonly.
//
// Preconditions: VirtualFilesystem.mountMu must be locked.
func (mnt *Mount) ReadOnlyLocked() bool {
	return mnt.writers.Load() < 0
}

// Filesystem returns the mounted Filesystem. It does not take a reference on
// the returned Filesystem.
func (mnt *Mount) Filesystem() *Filesystem {
	return mnt.fs
}

// submountsLocked returns this Mount and all Mounts that are descendents of
// it.
//
// Precondition: mnt.vfs.mountMu must be held.
func (mnt *Mount) submountsLocked() []*Mount {
	mounts := []*Mount{mnt}
	for m := range mnt.children {
		mounts = append(mounts, m.submountsLocked()...)
	}
	return mounts
}

// countSubmountsLocked returns mnt's total number of descendants including
// uncommitted descendants.
//
// Precondition: mnt.vfs.mountMu must be held.
func (mnt *Mount) countSubmountsLocked() uint32 {
	mounts := uint32(1)
	for m := range mnt.children {
		mounts += m.countSubmountsLocked()
	}
	return mounts
}

// Root returns the mount's root. It does not take a reference on the returned
// Dentry.
func (mnt *Mount) Root() *Dentry {
	return mnt.root
}

// GenerateProcMounts emits the contents of /proc/[pid]/mounts for vfs to buf.
//
// Preconditions: taskRootDir.Ok().
func (vfs *VirtualFilesystem) GenerateProcMounts(ctx context.Context, taskRootDir VirtualDentry, buf *bytes.Buffer) {
	rootMnt := taskRootDir.mount

	vfs.lockMounts()
	mounts := rootMnt.submountsLocked()
	// Take a reference on mounts since we need to drop vfs.mountMu before
	// calling vfs.PathnameReachable() (=> FilesystemImpl.PrependPath()).
	for _, mnt := range mounts {
		mnt.IncRef()
	}
	vfs.unlockMounts(ctx)
	defer func() {
		for _, mnt := range mounts {
			mnt.DecRef(ctx)
		}
	}()
	sort.Slice(mounts, func(i, j int) bool { return mounts[i].ID < mounts[j].ID })

	for _, mnt := range mounts {
		// Get the path to this mount relative to task root.
		mntRootVD := VirtualDentry{
			mount:  mnt,
			dentry: mnt.root,
		}
		path, err := vfs.PathnameReachable(ctx, taskRootDir, mntRootVD)
		if err != nil {
			// For some reason we didn't get a path. Log a warning
			// and run with empty path.
			ctx.Warningf("VFS.GenerateProcMounts: error getting pathname for mount root %+v: %v", mnt.root, err)
			path = ""
		}
		if path == "" {
			// Either an error occurred, or path is not reachable
			// from root.
			break
		}

		mntOpts := mnt.Options()
		opts := "rw"
		if mntOpts.ReadOnly {
			opts = "ro"
		}
		if mntOpts.Flags.NoATime {
			opts = ",noatime"
		}
		if mntOpts.Flags.NoExec {
			opts += ",noexec"
		}
		if mopts := mnt.fs.Impl().MountOptions(); mopts != "" {
			opts += "," + mopts
		}

		// Format:
		// <special device or remote filesystem> <mount point> <filesystem type> <mount options> <needs dump> <fsck order>
		//
		// The "needs dump" and "fsck order" flags are always 0, which
		// is allowed.
		fmt.Fprintf(buf, "%s %s %s %s %d %d\n", "none", path, mnt.fs.FilesystemType().Name(), opts, 0, 0)
	}
}

// GenerateProcMountInfo emits the contents of /proc/[pid]/mountinfo for vfs to
// buf.
//
// Preconditions: taskRootDir.Ok().
func (vfs *VirtualFilesystem) GenerateProcMountInfo(ctx context.Context, taskRootDir VirtualDentry, buf *bytes.Buffer) {
	rootMnt := taskRootDir.mount

	vfs.lockMounts()
	mounts := rootMnt.submountsLocked()
	// Take a reference on mounts since we need to drop vfs.mountMu before
	// calling vfs.PathnameReachable() (=> FilesystemImpl.PrependPath()) or
	// vfs.StatAt() (=> FilesystemImpl.StatAt()).
	for _, mnt := range mounts {
		mnt.IncRef()
	}
	vfs.unlockMounts(ctx)
	defer func() {
		for _, mnt := range mounts {
			mnt.DecRef(ctx)
		}
	}()
	sort.Slice(mounts, func(i, j int) bool { return mounts[i].ID < mounts[j].ID })

	creds := auth.CredentialsFromContext(ctx)
	for _, mnt := range mounts {
		// Get the path to this mount relative to task root.
		mntRootVD := VirtualDentry{
			mount:  mnt,
			dentry: mnt.root,
		}
		pathFromRoot, err := vfs.PathnameReachable(ctx, taskRootDir, mntRootVD)
		if err != nil {
			// For some reason we didn't get a path. Log a warning
			// and run with empty path.
			ctx.Warningf("VFS.GenerateProcMountInfo: error getting pathname for mount root %+v: %v", mnt.root, err)
			continue
		}
		if pathFromRoot == "" {
			// The path is not reachable from root.
			continue
		}
		var pathFromFS string
		pathFromFS, err = vfs.PathnameInFilesystem(ctx, mntRootVD)
		if err != nil {
			// For some reason we didn't get a path. Log a warning
			// and run with empty path.
			ctx.Warningf("VFS.GenerateProcMountInfo: error getting pathname for mount root %+v: %v", mnt.root, err)
			continue
		}
		if pathFromFS == "" {
			// The path is not reachable from root.
			continue
		}
		// Stat the mount root to get the major/minor device numbers.
		pop := &PathOperation{
			Root:  mntRootVD,
			Start: mntRootVD,
		}
		statx, err := vfs.StatAt(ctx, creds, pop, &StatOptions{})
		if err != nil {
			// Well that's not good. Ignore this mount.
			ctx.Warningf("VFS.GenerateProcMountInfo: failed to stat mount root %+v: %v", mnt.root, err)
			continue
		}

		// Format:
		// 36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
		// (1)(2)(3)   (4)   (5)      (6)      (7)   (8) (9)   (10)         (11)

		// (1) Mount ID.
		fmt.Fprintf(buf, "%d ", mnt.ID)

		// (2)  Parent ID (or this ID if there is no parent).
		// Note that even if the call to mnt.parent() races with Mount
		// destruction (which is possible since we're not holding vfs.mountMu),
		// its Mount.ID will still be valid.
		pID := mnt.ID
		if p := mnt.parent(); p != nil {
			pID = p.ID
		}
		fmt.Fprintf(buf, "%d ", pID)

		// (3) Major:Minor device ID. We don't have a superblock, so we
		// just use the root inode device number.
		fmt.Fprintf(buf, "%d:%d ", statx.DevMajor, statx.DevMinor)

		// (4) Root: the pathname of the directory in the filesystem
		// which forms the root of this mount.
		fmt.Fprintf(buf, "%s ", manglePath(pathFromFS))

		// (5) Mount point (relative to process root).
		fmt.Fprintf(buf, "%s ", manglePath(pathFromRoot))

		// (6) Mount options.
		opts := "rw"
		if mnt.ReadOnly() {
			opts = "ro"
		}
		if mnt.flags.NoATime {
			opts = ",noatime"
		}
		if mnt.flags.NoExec {
			opts += ",noexec"
		}
		fmt.Fprintf(buf, "%s ", opts)

		// (7) Optional fields: zero or more fields of the form "tag[:value]".
		fmt.Fprintf(buf, "%s", vfs.generateOptionalTags(ctx, mnt, taskRootDir))
		// (8) Separator: the end of the optional fields is marked by a single hyphen.
		fmt.Fprintf(buf, "- ")

		// (9) Filesystem type.
		fmt.Fprintf(buf, "%s ", mnt.fs.FilesystemType().Name())

		// (10) Mount source: filesystem-specific information or "none".
		fmt.Fprintf(buf, "none ")

		// (11) Superblock options, and final newline.
		fmt.Fprintf(buf, "%s\n", superBlockOpts(pathFromRoot, mnt))
	}
}

// manglePath replaces ' ', '\t', '\n', and '\\' with their octal equivalents.
// See Linux fs/seq_file.c:mangle_path.
func manglePath(p string) string {
	r := strings.NewReplacer(" ", "\\040", "\t", "\\011", "\n", "\\012", "\\", "\\134")
	return r.Replace(p)
}

// superBlockOpts returns the super block options string for the mount at
// the given path.
func superBlockOpts(mountPath string, mnt *Mount) string {
	// Compose super block options by combining global mount flags with
	// FS-specific mount options.
	opts := "rw"
	if mnt.ReadOnly() {
		opts = "ro"
	}

	if mopts := mnt.fs.Impl().MountOptions(); mopts != "" {
		opts += "," + mopts
	}

	// NOTE(b/147673608): If the mount is a ramdisk-based fake cgroupfs, we also
	// need to include the cgroup name in the options. For now we just read that
	// from the path. Note that this is only possible when "cgroup" isn't
	// registered as a valid filesystem type.
	//
	// TODO(gvisor.dev/issue/190): Once we removed fake cgroupfs support, we
	// should remove this.
	if cgroupfs := mnt.vfs.getFilesystemType("cgroup"); cgroupfs != nil && cgroupfs.opts.AllowUserMount {
		// Real cgroupfs available.
		return opts
	}
	if mnt.fs.FilesystemType().Name() == "cgroup" {
		splitPath := strings.Split(mountPath, "/")
		cgroupType := splitPath[len(splitPath)-1]
		opts += "," + cgroupType
	}

	return opts
}

func (vfs *VirtualFilesystem) generateOptionalTags(ctx context.Context, mnt *Mount, root VirtualDentry) string {
	vfs.lockMounts()
	defer vfs.unlockMounts(ctx)
	// TODO(b/305893463): Support MS_UNBINDABLE propagation type.
	var optionalSb strings.Builder
	if mnt.isShared {
		optionalSb.WriteString(fmt.Sprintf("shared:%d ", mnt.groupID))
	}
	if mnt.isFollower() {
		// Per man mount_namespaces(7), propagate_from should not be
		// included in optional tags if the leader "is the immediate leader of the
		// mount, or if there is no dominant peer group under the same root". A
		// dominant peer group is the nearest reachable mount in the leader/follower
		// chain.
		optionalSb.WriteString(fmt.Sprintf("master:%d ", mnt.leader.groupID))
		var dominant *Mount
		for m := mnt.leader; m != nil; m = m.leader {
			if dominant = vfs.peerUnderRoot(ctx, m, mnt.ns, root); dominant != nil {
				break
			}
		}
		if dominant != nil && dominant != mnt.leader {
			optionalSb.WriteString(fmt.Sprintf("propagate_from:%d ", dominant.groupID))
		}
	}
	return optionalSb.String()
}