1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
|
// Copyright 2022 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package vfs
import (
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/bits"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/errors/linuxerr"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
)
const (
// The following constants are possible bits for the cloneType argument to
// VirtualFilesystem.cloneMount() and related functions.
// Analogous to CL_MAKE_SHARED in Linux.
makeSharedClone = 1 << iota
// Analogous to CL_SLAVE in Linux.
makeFollowerClone
// Analogous to CL_PRIVATE in Linux.
makePrivateClone
// Analogous to CL_SHARED_TO_SLAVE in Linux.
sharedToFollowerClone
propagationFlags = linux.MS_SHARED | linux.MS_PRIVATE | linux.MS_SLAVE | linux.MS_UNBINDABLE
)
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) commitChildren(ctx context.Context, mnt *Mount) {
for c := range mnt.children {
if c.neverConnected() {
vfs.commitMount(ctx, c)
}
}
}
// commitMount attaches mnt to the parent and mountpoint specified by its
// mountKey and recursively does the same for all of mnt's descendants.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) commitMount(ctx context.Context, mnt *Mount) {
mp := mnt.getKey()
// If there is already a mount at this (parent, point), disconnect it from its
// parent and reconnect it to mnt once mnt has been connected.
child := vfs.mounts.Lookup(mp.mount, mp.dentry)
vfs.mounts.seq.BeginWrite()
if child != nil {
vfs.delayDecRef(vfs.disconnectLocked(child))
}
mp.dentry.mu.Lock()
vfs.connectLocked(mnt, mp, mp.mount.ns)
mp.dentry.mu.Unlock()
vfs.delayDecRef(mnt)
if child != nil {
newmp := VirtualDentry{mnt, mnt.root}
newmp.IncRef()
newmp.dentry.mu.Lock()
vfs.connectLocked(child, newmp, newmp.mount.ns)
newmp.dentry.mu.Unlock()
vfs.delayDecRef(child)
}
vfs.mounts.seq.EndWrite()
vfs.commitChildren(ctx, mnt)
}
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) abortUncomittedChildren(ctx context.Context, mnt *Mount) {
for c := range mnt.children {
if c.neverConnected() {
vfs.abortUncommitedMount(ctx, c)
delete(mnt.children, c)
}
}
}
// abortUncommitedMount releases references on mnt and all its descendants.
//
// Prerequisite: mnt is not connected, i.e. mnt.ns == nil.
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) abortUncommitedMount(ctx context.Context, mnt *Mount) {
vfs.delayDecRef(mnt)
vfs.delayDecRef(mnt.getKey())
mnt.setKey(VirtualDentry{})
vfs.setPropagation(mnt, linux.MS_PRIVATE)
vfs.abortUncomittedChildren(ctx, mnt)
}
// SetMountPropagationAt changes the propagation type of the mount pointed to by
// pop.
func (vfs *VirtualFilesystem) SetMountPropagationAt(ctx context.Context, creds *auth.Credentials, pop *PathOperation, propFlag uint32) error {
recursive := propFlag&linux.MS_REC != 0
propFlag &= propagationFlags
// Check if flags is a power of 2. If not then more than one flag is set.
if !bits.IsPowerOfTwo32(propFlag) {
return linuxerr.EINVAL
}
vd, err := vfs.getMountpoint(ctx, creds, pop)
if err != nil {
return err
}
defer vd.DecRef(ctx)
vfs.SetMountPropagation(vd.mount, propFlag, recursive)
return nil
}
// SetMountPropagation changes the propagation type of the mount.
func (vfs *VirtualFilesystem) SetMountPropagation(mnt *Mount, propFlag uint32, recursive bool) error {
vfs.lockMounts()
defer vfs.unlockMounts(context.Background())
if propFlag == linux.MS_SHARED {
if err := vfs.allocMountGroupIDs(mnt, recursive); err != nil {
return err
}
}
if !recursive {
vfs.setPropagation(mnt, propFlag)
return nil
}
for _, m := range mnt.submountsLocked() {
vfs.setPropagation(m, propFlag)
}
return nil
}
// setPropagation sets the propagation on mnt for a propagation type. This
// method is analogous to fs/pnode.c:change_mnt_propagation() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) setPropagation(mnt *Mount, propFlags uint32) {
if propFlags == linux.MS_SHARED {
mnt.isShared = true
return
}
// pflag is MS_PRIVATE, MS_SLAVE, or MS_UNBINDABLE. The algorithm is the same
// for MS_PRIVATE/MS_SLAVE/MS_UNBINDABLE, except that in the
// private/unbindable case we clear the leader and followerEntry after the
// procedure is finished.
var leader *Mount
if mnt.sharedEntry.Empty() {
// If mnt is shared and in a peer group with only itself, just make it
// private.
if mnt.isShared {
vfs.freeGroupID(mnt)
mnt.isShared = false
}
// If mnt is not a follower to any other mount, make all of its followers
// also private.
leader = mnt.leader
if leader == nil {
for !mnt.followerList.Empty() {
f := mnt.followerList.Front()
mnt.followerList.Remove(f)
f.leader = nil
}
}
} else {
// Pick a suitable new leader. Linux chooses the first peer that shares a
// root dentry, or any peer if none matches that criteria.
leader = mnt.sharedEntry.Next()
for m := mnt.sharedEntry.Next(); m != mnt; m = m.sharedEntry.Next() {
if m.root == mnt.root {
leader = m
break
}
}
// Clear out mnt's shared attributes.
mnt.sharedEntry.Remove()
mnt.groupID = 0
mnt.isShared = false
}
// Transfer all of mnt's followers to the new leader.
for f := mnt.followerList.Front(); f != nil; f = f.followerEntry.Next() {
f.leader = leader
}
// Remove mnt from its current follower list and add it to the new leader.
if mnt.leader != nil {
mnt.leader.followerList.Remove(mnt)
}
if leader != nil && propFlags == linux.MS_SLAVE {
leader.followerList.PushFront(mnt)
mnt.leader = leader
} else {
mnt.leader = nil
}
// Add mnts followers to leader's follower list. This also links all their
// followerEntry together.
if !mnt.followerList.Empty() && leader != nil {
leader.followerList.PushBackList(&mnt.followerList)
}
}
type propState struct {
origSrc *Mount
prevSrc *Mount
prevDst *Mount
dstLeader *Mount
propList map[*Mount]struct{}
visitedLeaders map[*Mount]struct{}
}
// doPropagation returns a list of propagated mounts with their mount points
// set. The mounts are clones of src and have an extra reference taken. If
// propagation fails at any point, the method returns all the mounts propagated
// up until that point so they can be properly released. This method is
// analogous to fs/pnode.c:propagate_mnt() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) doPropagation(ctx context.Context, src *Mount, dst VirtualDentry) (map[*Mount]struct{}, error) {
if !dst.mount.isShared {
return nil, nil
}
s := propState{
origSrc: src,
prevSrc: src,
prevDst: dst.mount,
dstLeader: dst.mount.leader,
propList: map[*Mount]struct{}{},
visitedLeaders: map[*Mount]struct{}{},
}
for peer := dst.mount.sharedEntry.Next(); peer != dst.mount; peer = peer.sharedEntry.Next() {
if err := vfs.propagateMount(ctx, peer, dst.dentry, &s); err != nil {
return s.propList, err
}
}
for follower := nextFollowerPeerGroup(dst.mount, dst.mount); follower != nil; follower = nextFollowerPeerGroup(follower, dst.mount) {
peer := follower
for {
if err := vfs.propagateMount(ctx, peer, dst.dentry, &s); err != nil {
return s.propList, err
}
peer = peer.sharedEntry.Next()
if peer == follower {
break
}
}
}
return s.propList, nil
}
// peers returns if two mounts are in the same peer group.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) peers(m1, m2 *Mount) bool {
return m1.groupID == m2.groupID && m1.groupID != 0
}
// propagateMount propagates state.srcMount to dstMount at dstPoint.
// This method is analogous to fs/pnode.c:propagate_one() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) propagateMount(ctx context.Context, dstMnt *Mount, dstPoint *Dentry, state *propState) error {
// Skip newly added mounts.
if dstMnt.neverConnected() || dstMnt.umounted {
return nil
}
mp := VirtualDentry{mount: dstMnt, dentry: dstPoint}
if !mp.mount.fs.Impl().IsDescendant(VirtualDentry{dstMnt, dstMnt.root}, mp) {
return nil
}
cloneType := 0
if vfs.peers(dstMnt, state.prevDst) {
cloneType = makeSharedClone
} else {
done := false
// Get the most recent leader that we've propagated from in the tree.
var leader, underLeader *Mount
for underLeader = dstMnt; ; underLeader = leader {
leader = underLeader.leader
if _, ok := state.visitedLeaders[leader]; ok {
break
}
if leader == state.dstLeader {
break
}
}
for {
parent := state.prevSrc.parent()
// Check that prevSrc is a follower, not a peer of the original.
if vfs.peers(state.prevSrc, state.origSrc) {
break
}
// Check if the mount prvSrc attached to (aka parent) has the same leader
// as the most recently visited leader in the mount tree.
done = parent.leader == leader
// If the leader under the most recently visited leader is not peers with
// the mount prevSrc attached to, then it's not part of this propagation
// tree and we need to traverse up the tree to get to the real src.
if done && vfs.peers(underLeader, parent) {
break
}
// Traverse back up the propagation tree to get the proper src. We only
// want to propagate from this mount's leader or peers of that leader.
state.prevSrc = state.prevSrc.leader
if done {
break
}
}
cloneType = makeFollowerClone
if dstMnt.isShared {
cloneType |= makeSharedClone
}
}
clone, err := vfs.cloneMountTree(ctx, state.prevSrc, state.prevSrc.root, cloneType, nil)
if err != nil {
return err
}
mp.IncRef()
clone.setKey(mp)
state.propList[clone] = struct{}{}
if dstMnt.leader != state.dstLeader {
state.visitedLeaders[dstMnt.leader] = struct{}{}
}
state.prevDst = dstMnt
state.prevSrc = clone
return dstMnt.ns.checkMountCount(ctx, clone)
}
// nextFollowerPeerGroup iterates through the propagation tree and returns the
// first mount in each follower peer group under mnt. Once all the groups
// have been iterated through the method returns nil. This method is analogous
// to fs/pnode.c:next_group() in Linux.
func nextFollowerPeerGroup(mnt *Mount, start *Mount) *Mount {
for {
// If mnt has any followers, this loop returns that follower. Otherwise mnt
// is updated until it is the last peer in its peer group. This has the
// effect of moving down the propagation tree until the bottommost follower.
// After that the loop moves across peers (if possible) to the last peer
// in the group.
for {
if !mnt.neverConnected() && !mnt.followerList.Empty() {
return mnt.followerList.Front()
}
next := mnt.sharedEntry.Next()
if mnt.groupID == start.groupID {
if next == start {
return nil
}
// If mnt is shared+slave, its next follower will be the same as its
// next peer.
} else if mnt.isFollower() && mnt.followerEntry.Next() != next {
break
}
mnt = next
}
// At this point mnt is the last peer in its shared+slave peer group.
// This loop returns the next follower in mnt's leader's follower list. Once
// the list of followers is exhausted it sets mnt to be the leader and
// breaks out of the loop. This has the effect of moving across the tree
// branches until all branches are exhausted. Then it moves up the tree to
// the parent.
for {
leader := mnt.leader
if mnt.followerEntry.Next() != nil {
return mnt.followerEntry.Next()
}
mnt = leader.sharedEntry.Next()
if leader.groupID == start.groupID {
break
}
if leader.followerEntry.Next() == mnt {
break
}
mnt = leader
}
if mnt == start {
return nil
}
}
}
// nextPropMount iterates through the propagation tree rooted at start. It
// returns nil when there are no more mounts in the tree. Otherwise, it returns
// the next mount in the tree. It is analogous to fs/pnode.c:propagation_next()
// in Linux.
func nextPropMount(mnt, start *Mount) *Mount {
m := mnt
if !m.neverConnected() && !m.followerList.Empty() {
return m.followerList.Front()
}
for {
leader := m.leader
if leader == start.leader {
next := m.sharedEntry.Next()
if next == start {
return nil
}
return next
} else if m.followerEntry.Next() != nil {
return m.followerEntry.Next()
}
m = leader
}
}
// arePropMountsBusy checks if all the mounts that mnt's parents propagate to
// have the correct number of references before a call to umount. It is
// analogous to fs/pnode.c:propagate_mount_busy() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) arePropMountsBusy(mnt *Mount) bool {
parent := mnt.parent()
if parent == nil {
return !vfs.mountHasExpectedRefs(mnt)
}
if len(mnt.children) != 0 || !vfs.mountHasExpectedRefs(mnt) {
return true
}
for m := nextPropMount(parent, parent); m != nil; m = nextPropMount(m, parent) {
child := vfs.mounts.Lookup(m, mnt.point())
if child == nil {
continue
}
if len(child.children) != 0 && child.coveringMount() == nil {
continue
}
if !vfs.mountHasExpectedRefs(child) {
return true
}
}
return false
}
// allocateGroupID populates mnt.groupID with a new group id if one is
// available, and returns an error otherwise. If the group ID bitmap is full,
// double the size of the bitmap before allocating the new group id. It is
// analogous to fs/namespace.c:mnt_alloc_group_id() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) allocateGroupID(mnt *Mount) error {
groupID, err := vfs.groupIDBitmap.FirstZero(1)
if err != nil {
if err := vfs.groupIDBitmap.Grow(uint32(vfs.groupIDBitmap.Size())); err != nil {
return linuxerr.ENOSPC
}
groupID, err = vfs.groupIDBitmap.FirstZero(1)
if err != nil {
return err
}
}
vfs.groupIDBitmap.Add(groupID)
mnt.groupID = groupID
return nil
}
// freeGroupID marks a groupID as available for reuse. It is analogous to
// fs/namespace.c:mnt_release_group_id() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) freeGroupID(mnt *Mount) {
vfs.groupIDBitmap.Remove(mnt.groupID)
mnt.groupID = 0
}
// cleanupGroupIDs zeroes out all of the mounts' groupIDs and returns them
// to the pool of available ids. It is analogous to
// fs/namespace.c:cleanup_group_ids() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) cleanupGroupIDs(mnts []*Mount) {
for _, m := range mnts {
if m.groupID != 0 && !m.isShared {
vfs.freeGroupID(m)
}
}
}
// allocMountGroupIDs allocates a new group id for mnt. If recursive is true, it
// also allocates a new group id for all mounts children. It is analogous to
// fs/namespace.c:invent_group_ids() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) allocMountGroupIDs(mnt *Mount, recursive bool) error {
var mnts []*Mount
if recursive {
mnts = mnt.submountsLocked()
} else {
mnts = []*Mount{mnt}
}
for _, m := range mnts {
if m.groupID == 0 && !m.isShared {
if err := vfs.allocateGroupID(m); err != nil {
vfs.cleanupGroupIDs(mnts)
return err
}
}
}
return nil
}
// propagateUmount returns a list of mounts that the umount of mnts propagates
// to.
//
// Prerequisites: all the mounts in mnts have had vfs.umount() called on them.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) propagateUmount(mnts []*Mount) []*Mount {
const (
umountVisited = iota
umountRestore
)
var toUmount []*Mount
noChildren := make(map[*Mount]struct{})
// Processed contains all the mounts that the algorithm has processed so far.
// If the mount maps to umountRestore, it should be restored after processing
// all the mounts. This happens in cases where a mount was speculatively
// unmounted that had children or is a cover mount.
processed := make(map[*Mount]int)
// Iterate through the mounts from the leafs back to the root.
for i := len(mnts) - 1; i >= 0; i-- {
mnt := mnts[i]
// If a mount has already been visited we know all its peers and followers
// have been visited so there's no need to visit them again.
if _, ok := processed[mnt]; ok {
continue
}
processed[mnt] = umountVisited
parent := mnt.parent()
if parent == nil {
continue
}
for m := nextPropMount(parent, parent); m != nil; m = nextPropMount(m, parent) {
child := vfs.mounts.Lookup(m, mnt.point())
if child == nil {
continue
}
if _, ok := processed[child]; ok {
// If the child has been visited we know its peer group and followers
// have all been visited so there's no need to visit them again. We can
// skip this propagation subtree by setting the iterator to be the last
// mount in the follower group.
if !child.followerList.Empty() {
m = child.followerList.Back()
}
continue
} else if child.umounted {
// If this child has already been marked for unmounting, just mark it
// as visited and move on. This means it was either part of the original
// mount list passed to this method or was umounted from another mount's
// propagation. In either case we can consider all its peers and
// followers as visited.
processed[child] = umountVisited
continue
}
// This loop starts at the child we are propagating the umount to and
// iterates through the child's parents. It continues as until it
// encounters a parent that's been visited.
loop:
for {
if _, ok := noChildren[child]; ok || child.umounted {
break
}
// If there are any children that have mountpoint != parent's root then
// the current mount cannot be unmounted.
for gchild := range child.children {
if gchild.point() == child.root {
continue
}
_, isProcessed := processed[gchild]
_, hasNoChildren := noChildren[gchild]
if isProcessed && hasNoChildren {
continue
}
processed[child] = umountRestore
break loop
}
if child.locked {
processed[child] = umountRestore
noChildren[child] = struct{}{}
} else {
vfs.umount(child)
toUmount = append(toUmount, child)
}
// If this parent was a mount that had to be restored because it had
// children, it might be safe to umount now that its child is gone. If
// it has been visited then it's already being umounted.
child = child.parent()
if _, ok := processed[child]; !ok {
break
}
}
}
}
// Add all the children of mounts marked for umount to the umount list. This
// excludes "cover" mounts (mounts whose mount point is equal to their
// parent's root) which will be reparented in the next step.
for i := 0; i < len(toUmount); i++ {
umount := toUmount[i]
for child := range umount.children {
if child.point() == umount.root {
processed[child] = umountRestore
} else {
vfs.umount(child)
toUmount = append(toUmount, child)
}
}
}
vfs.mounts.seq.BeginWrite()
for m, status := range processed {
if status == umountVisited {
continue
}
mp := m.getKey()
for mp.mount.umounted {
mp = mp.mount.getKey()
}
if mp != m.getKey() {
vfs.changeMountpoint(m, mp)
}
}
vfs.mounts.seq.EndWrite()
return toUmount
}
// unlockPropagationMounts sets locked to false for every mount that a umount
// of mnt propagates to. It is analogous to fs/pnode.c:propagate_mount_unlock()
// in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) unlockPropagationMounts(mnt *Mount) {
parent := mnt.parent()
if parent == nil {
return
}
for m := nextPropMount(parent, parent); m != nil; m = nextPropMount(m, parent) {
child := vfs.mounts.Lookup(m, mnt.point())
if child == nil {
continue
}
child.locked = false
}
}
// peerUnderRoot iterates through mnt's peers until it finds a mount that is in
// ns and is reachable from root. This method is analogous to
// fs/pnode.c:get_peer_under_root() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) peerUnderRoot(ctx context.Context, mnt *Mount, ns *MountNamespace, root VirtualDentry) *Mount {
m := mnt
for {
if m.ns == ns {
if vfs.isPathReachable(ctx, root, VirtualDentry{mnt, mnt.root}) {
return m
}
}
m = m.sharedEntry.Next()
if m == mnt {
break
}
}
return nil
}
// isPathReachable returns true if vd is reachable from vfsroot. It is analogous
// to fs/namespace.c:is_path_reachable() in Linux.
//
// +checklocks:vfs.mountMu
func (vfs *VirtualFilesystem) isPathReachable(ctx context.Context, vfsroot VirtualDentry, vd VirtualDentry) bool {
for vd.mount != vfsroot.mount && vd.mount.parent() != nil {
vd = vd.mount.getKey()
}
return vd.mount == vfsroot.mount && vd.mount.fs.Impl().IsDescendant(vfsroot, vd)
}
|