1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"math"
"time"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
// effectivelyInfinity is an initialization value used for round-trip times
// that are then set using min. It is equal to approximately 100 years: large
// enough that it will always be greater than a real TCP round-trip time, and
// small enough that it fits in time.Duration.
const effectivelyInfinity = time.Duration(math.MaxInt64)
const (
// RTT = round-trip time.
// The delay increase sensitivity is determined by minRTTThresh and
// maxRTTThresh. Smaller values of minRTTThresh may cause spurious exits
// from slow start. Larger values of maxRTTThresh may result in slow start
// not exiting until loss is encountered for connections on large RTT paths.
minRTTThresh = 4 * time.Millisecond
maxRTTThresh = 16 * time.Millisecond
// minRTTDivisor is a fraction of RTT to compute the delay threshold. A
// smaller value would mean a larger threshold and thus less sensitivity to
// delay increase, and vice versa.
minRTTDivisor = 8
// nRTTSample is the minimum number of RTT samples in the round before
// considering whether to exit the round due to increased RTT.
nRTTSample = 8
// ackDelta is the maximum time between ACKs for them to be considered part
// of the same ACK Train during HyStart
ackDelta = 2 * time.Millisecond
)
// cubicState stores the variables related to TCP CUBIC congestion
// control algorithm state.
//
// See: https://tools.ietf.org/html/rfc8312.
// +stateify savable
type cubicState struct {
stack.TCPCubicState
// numCongestionEvents tracks the number of congestion events since last
// RTO.
numCongestionEvents int
s *sender
}
// newCubicCC returns a partially initialized cubic state with the constants
// beta and c set and t set to current time.
func newCubicCC(s *sender) *cubicState {
now := s.ep.stack.Clock().NowMonotonic()
return &cubicState{
TCPCubicState: stack.TCPCubicState{
T: now,
Beta: 0.7,
C: 0.4,
// By this point, the sender has initialized it's initial sequence
// number.
EndSeq: s.SndNxt,
LastRTT: effectivelyInfinity,
CurrRTT: effectivelyInfinity,
LastAck: now,
RoundStart: now,
},
s: s,
}
}
// enterCongestionAvoidance is used to initialize cubic in cases where we exit
// SlowStart without a real congestion event taking place. This can happen when
// a connection goes back to slow start due to a retransmit and we exceed the
// previously lowered ssThresh without experiencing packet loss.
//
// Refer: https://tools.ietf.org/html/rfc8312#section-4.8
func (c *cubicState) enterCongestionAvoidance() {
// See: https://tools.ietf.org/html/rfc8312#section-4.7 &
// https://tools.ietf.org/html/rfc8312#section-4.8
if c.numCongestionEvents == 0 {
c.K = 0
c.T = c.s.ep.stack.Clock().NowMonotonic()
c.WLastMax = c.WMax
c.WMax = float64(c.s.SndCwnd)
}
}
// updateHyStart tracks packet round-trip time (rtt) to find a safe threshold
// to exit slow start without triggering packet loss. It updates the SSThresh
// when it does.
//
// Implementation of HyStart follows the algorithm from the Linux kernel, rather
// than RFC 9406 (https://www.rfc-editor.org/rfc/rfc9406.html). Briefly, the
// Linux kernel algorithm is based directly on the original HyStart paper
// (https://doi.org/10.1016/j.comnet.2011.01.014), and differs from the RFC in
// that two detection algorithms run in parallel ('ACK train' and 'Delay
// increase'). The RFC version includes only the latter algorithm and adds an
// intermediate phase called Conservative Slow Start, which is not implemented
// here.
func (c *cubicState) updateHyStart(rtt time.Duration) {
if rtt < 0 {
// negative indicates unknown
return
}
now := c.s.ep.stack.Clock().NowMonotonic()
if c.EndSeq.LessThan(c.s.SndUna) {
c.beginHyStartRound(now)
}
// ACK train
if now.Sub(c.LastAck) < ackDelta && // ensures acks are part of the same "train"
c.LastRTT < effectivelyInfinity {
c.LastAck = now
if thresh := c.LastRTT / 2; now.Sub(c.RoundStart) > thresh {
c.s.Ssthresh = c.s.SndCwnd
}
}
// Delay increase
c.CurrRTT = min(c.CurrRTT, rtt)
c.SampleCount++
if c.SampleCount >= nRTTSample && c.LastRTT < effectivelyInfinity {
// i.e. LastRTT/minRTTDivisor, but clamped to minRTTThresh & maxRTTThresh
thresh := max(
minRTTThresh,
min(maxRTTThresh, c.LastRTT/minRTTDivisor),
)
if c.CurrRTT >= (c.LastRTT + thresh) {
// Triggered HyStart safe exit threshold
c.s.Ssthresh = c.s.SndCwnd
}
}
}
func (c *cubicState) beginHyStartRound(now tcpip.MonotonicTime) {
c.EndSeq = c.s.SndNxt
c.SampleCount = 0
c.LastRTT = c.CurrRTT
c.CurrRTT = effectivelyInfinity
c.LastAck = now
c.RoundStart = now
}
// updateSlowStart will update the congestion window as per the slow-start
// algorithm used by NewReno. If after adjusting the congestion window we cross
// the ssThresh then it will return the number of packets that must be consumed
// in congestion avoidance mode.
func (c *cubicState) updateSlowStart(packetsAcked int) int {
// Don't let the congestion window cross into the congestion
// avoidance range.
newcwnd := c.s.SndCwnd + packetsAcked
enterCA := false
if newcwnd >= c.s.Ssthresh {
newcwnd = c.s.Ssthresh
c.s.SndCAAckCount = 0
enterCA = true
}
packetsAcked -= newcwnd - c.s.SndCwnd
c.s.SndCwnd = newcwnd
if enterCA {
c.enterCongestionAvoidance()
}
return packetsAcked
}
// Update updates cubic's internal state variables. It must be called on every
// ACK received.
// Refer: https://tools.ietf.org/html/rfc8312#section-4
func (c *cubicState) Update(packetsAcked int, rtt time.Duration) {
if c.s.Ssthresh == InitialSsthresh && c.s.SndCwnd < c.s.Ssthresh {
c.updateHyStart(rtt)
}
if c.s.SndCwnd < c.s.Ssthresh {
packetsAcked = c.updateSlowStart(packetsAcked)
if packetsAcked == 0 {
return
}
} else {
c.s.rtt.Lock()
srtt := c.s.rtt.TCPRTTState.SRTT
c.s.rtt.Unlock()
c.s.SndCwnd = c.getCwnd(packetsAcked, c.s.SndCwnd, srtt)
}
}
// cubicCwnd computes the CUBIC congestion window after t seconds from last
// congestion event.
func (c *cubicState) cubicCwnd(t float64) float64 {
return c.C*math.Pow(t, 3.0) + c.WMax
}
// getCwnd returns the current congestion window as computed by CUBIC.
// Refer: https://tools.ietf.org/html/rfc8312#section-4
func (c *cubicState) getCwnd(packetsAcked, sndCwnd int, srtt time.Duration) int {
elapsed := c.s.ep.stack.Clock().NowMonotonic().Sub(c.T)
elapsedSeconds := elapsed.Seconds()
// Compute the window as per Cubic after 'elapsed' time
// since last congestion event.
c.WC = c.cubicCwnd(elapsedSeconds - c.K)
// Compute the TCP friendly estimate of the congestion window.
c.WEst = c.WMax*c.Beta + (3.0*((1.0-c.Beta)/(1.0+c.Beta)))*(elapsedSeconds/srtt.Seconds())
// Make sure in the TCP friendly region CUBIC performs at least
// as well as Reno.
if c.WC < c.WEst && float64(sndCwnd) < c.WEst {
// TCP Friendly region of cubic.
return int(c.WEst)
}
// In Concave/Convex region of CUBIC, calculate what CUBIC window
// will be after 1 RTT and use that to grow congestion window
// for every ack.
tEst := (elapsed + srtt).Seconds()
wtRtt := c.cubicCwnd(tEst - c.K)
// As per 4.3 for each received ACK cwnd must be incremented
// by (w_cubic(t+RTT) - cwnd/cwnd.
cwnd := float64(sndCwnd)
for i := 0; i < packetsAcked; i++ {
// Concave/Convex regions of cubic have the same formulas.
// See: https://tools.ietf.org/html/rfc8312#section-4.3
cwnd += (wtRtt - cwnd) / cwnd
}
return int(cwnd)
}
// HandleLossDetected implements congestionControl.HandleLossDetected.
func (c *cubicState) HandleLossDetected() {
// See: https://tools.ietf.org/html/rfc8312#section-4.5
c.numCongestionEvents++
c.T = c.s.ep.stack.Clock().NowMonotonic()
c.WLastMax = c.WMax
c.WMax = float64(c.s.SndCwnd)
c.fastConvergence()
c.reduceSlowStartThreshold()
}
// HandleRTOExpired implements congestionContrl.HandleRTOExpired.
func (c *cubicState) HandleRTOExpired() {
// See: https://tools.ietf.org/html/rfc8312#section-4.6
c.T = c.s.ep.stack.Clock().NowMonotonic()
c.numCongestionEvents = 0
c.WLastMax = c.WMax
c.WMax = float64(c.s.SndCwnd)
c.fastConvergence()
// We lost a packet, so reduce ssthresh.
c.reduceSlowStartThreshold()
// Reduce the congestion window to 1, i.e., enter slow-start. Per
// RFC 5681, page 7, we must use 1 regardless of the value of the
// initial congestion window.
c.s.SndCwnd = 1
}
// fastConvergence implements the logic for Fast Convergence algorithm as
// described in https://tools.ietf.org/html/rfc8312#section-4.6.
func (c *cubicState) fastConvergence() {
if c.WMax < c.WLastMax {
c.WLastMax = c.WMax
c.WMax = c.WMax * (1.0 + c.Beta) / 2.0
} else {
c.WLastMax = c.WMax
}
// Recompute k as wMax may have changed.
c.K = math.Cbrt(c.WMax * (1 - c.Beta) / c.C)
}
// PostRecovery implements congestionControl.PostRecovery.
func (c *cubicState) PostRecovery() {
c.T = c.s.ep.stack.Clock().NowMonotonic()
}
// reduceSlowStartThreshold returns new SsThresh as described in
// https://tools.ietf.org/html/rfc8312#section-4.7.
func (c *cubicState) reduceSlowStartThreshold() {
c.s.Ssthresh = int(math.Max(float64(c.s.SndCwnd)*c.Beta, 2.0))
}
|