1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package state
import (
"bytes"
"context"
"fmt"
"io"
"math"
"reflect"
"gvisor.dev/gvisor/pkg/state/wire"
)
// internalCallback is a interface called on object completion.
//
// There are two implementations: objectDecodeState & userCallback.
type internalCallback interface {
// source returns the dependent object. May be nil.
source() *objectDecodeState
// callbackRun executes the callback.
callbackRun()
}
// userCallback is an implementation of internalCallback.
type userCallback func()
// source implements internalCallback.source.
func (userCallback) source() *objectDecodeState {
return nil
}
// callbackRun implements internalCallback.callbackRun.
func (uc userCallback) callbackRun() {
uc()
}
// objectDecodeState represents an object that may be in the process of being
// decoded. Specifically, it represents either a decoded object, or an an
// interest in a future object that will be decoded. When that interest is
// registered (via register), the storage for the object will be created, but
// it will not be decoded until the object is encountered in the stream.
type objectDecodeState struct {
// id is the id for this object.
id objectID
// typ is the id for this typeID. This may be zero if this is not a
// type-registered structure.
typ typeID
// obj is the object. This may or may not be valid yet, depending on
// whether complete returns true. However, regardless of whether the
// object is valid, obj contains a final storage location for the
// object. This is immutable.
//
// Note that this must be addressable (obj.Addr() must not panic).
//
// The obj passed to the decode methods below will equal this obj only
// in the case of decoding the top-level object. However, the passed
// obj may represent individual fields, elements of a slice, etc. that
// are effectively embedded within the reflect.Value below but with
// distinct types.
obj reflect.Value
// blockedBy is the number of dependencies this object has.
blockedBy int
// callbacksInline is inline storage for callbacks.
callbacksInline [2]internalCallback
// callbacks is a set of callbacks to execute on load.
callbacks []internalCallback
completeEntry
}
// addCallback adds a callback to the objectDecodeState.
func (ods *objectDecodeState) addCallback(ic internalCallback) {
if ods.callbacks == nil {
ods.callbacks = ods.callbacksInline[:0]
}
ods.callbacks = append(ods.callbacks, ic)
}
// findCycleFor returns when the given object is found in the blocking set.
func (ods *objectDecodeState) findCycleFor(target *objectDecodeState) []*objectDecodeState {
for _, ic := range ods.callbacks {
other := ic.source()
if other != nil && other == target {
return []*objectDecodeState{target}
} else if childList := other.findCycleFor(target); childList != nil {
return append(childList, other)
}
}
// This should not occur.
Failf("no deadlock found?")
panic("unreachable")
}
// findCycle finds a dependency cycle.
func (ods *objectDecodeState) findCycle() []*objectDecodeState {
return append(ods.findCycleFor(ods), ods)
}
// source implements internalCallback.source.
func (ods *objectDecodeState) source() *objectDecodeState {
return ods
}
// callbackRun implements internalCallback.callbackRun.
func (ods *objectDecodeState) callbackRun() {
ods.blockedBy--
}
// decodeState is a graph of objects in the process of being decoded.
//
// The decode process involves loading the breadth-first graph generated by
// encode. This graph is read in it's entirety, ensuring that all object
// storage is complete.
//
// As the graph is being serialized, a set of completion callbacks are
// executed. These completion callbacks should form a set of acyclic subgraphs
// over the original one. After decoding is complete, the objects are scanned
// to ensure that all callbacks are executed, otherwise the callback graph was
// not acyclic.
type decodeState struct {
// ctx is the decode context.
ctx context.Context
// r is the input stream.
r io.Reader
// types is the type database.
types typeDecodeDatabase
// objectByID is the set of objects in progress.
objectsByID []*objectDecodeState
// deferred are objects that have been read, by no interest has been
// registered yet. These will be decoded once interest in registered.
deferred map[objectID]wire.Object
// pending is the set of objects that are not yet complete.
pending completeList
// stats tracks time data.
stats Stats
}
// lookup looks up an object in decodeState or returns nil if no such object
// has been previously registered.
func (ds *decodeState) lookup(id objectID) *objectDecodeState {
if len(ds.objectsByID) < int(id) {
return nil
}
return ds.objectsByID[id-1]
}
// checkComplete checks for completion.
func (ds *decodeState) checkComplete(ods *objectDecodeState) bool {
// Still blocked?
if ods.blockedBy > 0 {
return false
}
// Track stats if relevant.
if ods.callbacks != nil && ods.typ != 0 {
ds.stats.start(ods.typ)
defer ds.stats.done()
}
// Fire all callbacks.
for _, ic := range ods.callbacks {
ic.callbackRun()
}
// Mark completed.
cbs := ods.callbacks
ods.callbacks = nil
ds.pending.Remove(ods)
// Recursively check others.
for _, ic := range cbs {
if other := ic.source(); other != nil && other.blockedBy == 0 {
ds.checkComplete(other)
}
}
return true // All set.
}
// wait registers a dependency on an object.
//
// As a special case, we always allow _useable_ references back to the first
// decoding object because it may have fields that are already decoded. We also
// allow trivial self reference, since they can be handled internally.
func (ds *decodeState) wait(waiter *objectDecodeState, id objectID, callback func()) {
switch id {
case waiter.id:
// Trivial self reference.
fallthrough
case 1:
// Root object; see above.
if callback != nil {
callback()
}
return
}
// Mark as blocked.
waiter.blockedBy++
// No nil can be returned here.
other := ds.lookup(id)
if callback != nil {
// Add the additional user callback.
other.addCallback(userCallback(callback))
}
// Mark waiter as unblocked.
other.addCallback(waiter)
}
// waitObject notes a blocking relationship.
func (ds *decodeState) waitObject(ods *objectDecodeState, encoded wire.Object, callback func()) {
if rv, ok := encoded.(*wire.Ref); ok && rv.Root != 0 {
// Refs can encode pointers and maps.
ds.wait(ods, objectID(rv.Root), callback)
} else if sv, ok := encoded.(*wire.Slice); ok && sv.Ref.Root != 0 {
// See decodeObject; we need to wait for the array (if non-nil).
ds.wait(ods, objectID(sv.Ref.Root), callback)
} else if iv, ok := encoded.(*wire.Interface); ok {
// It's an interface (wait recursively).
ds.waitObject(ods, iv.Value, callback)
} else if callback != nil {
// Nothing to wait for: execute the callback immediately.
callback()
}
}
// walkChild returns a child object from obj, given an accessor path. This is
// the decode-side equivalent to traverse in encode.go.
//
// For the purposes of this function, a child object is either a field within a
// struct or an array element, with one such indirection per element in
// path. The returned value may be an unexported field, so it may not be
// directly assignable. See decode_unsafe.go.
func walkChild(path []wire.Dot, obj reflect.Value) reflect.Value {
// See wire.Ref.Dots. The path here is specified in reverse order.
for i := len(path) - 1; i >= 0; i-- {
switch pc := path[i].(type) {
case *wire.FieldName: // Must be a pointer.
if obj.Kind() != reflect.Struct {
Failf("next component in child path is a field name, but the current object is not a struct. Path: %v, current obj: %#v", path, obj)
}
obj = obj.FieldByName(string(*pc))
case wire.Index: // Embedded.
if obj.Kind() != reflect.Array {
Failf("next component in child path is an array index, but the current object is not an array. Path: %v, current obj: %#v", path, obj)
}
obj = obj.Index(int(pc))
default:
panic("unreachable: switch should be exhaustive")
}
}
return obj
}
// register registers a decode with a type.
//
// This type is only used to instantiate a new object if it has not been
// registered previously. This depends on the type provided if none is
// available in the object itself.
func (ds *decodeState) register(r *wire.Ref, typ reflect.Type) reflect.Value {
// Grow the objectsByID slice.
id := objectID(r.Root)
if len(ds.objectsByID) < int(id) {
ds.objectsByID = append(ds.objectsByID, make([]*objectDecodeState, int(id)-len(ds.objectsByID))...)
}
// Does this object already exist?
ods := ds.objectsByID[id-1]
if ods != nil {
return walkChild(r.Dots, ods.obj)
}
// Create the object.
if len(r.Dots) != 0 {
typ = ds.findType(r.Type)
}
v := reflect.New(typ)
ods = &objectDecodeState{
id: id,
obj: v.Elem(),
}
ds.objectsByID[id-1] = ods
ds.pending.PushBack(ods)
// Process any deferred objects & callbacks.
if encoded, ok := ds.deferred[id]; ok {
delete(ds.deferred, id)
ds.decodeObject(ods, ods.obj, encoded)
}
return walkChild(r.Dots, ods.obj)
}
// objectDecoder is for decoding structs.
type objectDecoder struct {
// ds is decodeState.
ds *decodeState
// ods is current object being decoded.
ods *objectDecodeState
// reconciledTypeEntry is the reconciled type information.
rte *reconciledTypeEntry
// encoded is the encoded object state.
encoded *wire.Struct
}
// load is helper for the public methods on Source.
func (od *objectDecoder) load(slot int, objPtr reflect.Value, wait bool, fn func()) {
// Note that we have reconciled the type and may remap the fields here
// to match what's expected by the decoder. The "slot" parameter here
// is in terms of the local type, where the fields in the encoded
// object are in terms of the wire object's type, which might be in a
// different order (but will have the same fields).
v := *od.encoded.Field(od.rte.FieldOrder[slot])
od.ds.decodeObject(od.ods, objPtr.Elem(), v)
if wait {
// Mark this individual object a blocker.
od.ds.waitObject(od.ods, v, fn)
}
}
// aterLoad implements Source.AfterLoad.
func (od *objectDecoder) afterLoad(fn func()) {
// Queue the local callback; this will execute when all of the above
// data dependencies have been cleared.
od.ods.addCallback(userCallback(fn))
}
// decodeStruct decodes a struct value.
func (ds *decodeState) decodeStruct(ods *objectDecodeState, obj reflect.Value, encoded *wire.Struct) {
if encoded.TypeID == 0 {
// Allow anonymous empty structs, but only if the encoded
// object also has no fields.
if encoded.Fields() == 0 && obj.NumField() == 0 {
return
}
// Propagate an error.
Failf("empty struct on wire %#v has field mismatch with type %q", encoded, obj.Type().Name())
}
// Lookup the object type.
rte := ds.types.Lookup(typeID(encoded.TypeID), obj.Type())
ods.typ = typeID(encoded.TypeID)
// Invoke the loader.
od := objectDecoder{
ds: ds,
ods: ods,
rte: rte,
encoded: encoded,
}
ds.stats.start(ods.typ)
defer ds.stats.done()
if sl, ok := obj.Addr().Interface().(SaverLoader); ok {
// Note: may be a registered empty struct which does not
// implement the saver/loader interfaces.
sl.StateLoad(ds.ctx, Source{internal: od})
}
}
// decodeMap decodes a map value.
func (ds *decodeState) decodeMap(ods *objectDecodeState, obj reflect.Value, encoded *wire.Map) {
if obj.IsNil() {
// See pointerTo.
obj.Set(reflect.MakeMap(obj.Type()))
}
for i := 0; i < len(encoded.Keys); i++ {
// Decode the objects.
kv := reflect.New(obj.Type().Key()).Elem()
vv := reflect.New(obj.Type().Elem()).Elem()
ds.decodeObject(ods, kv, encoded.Keys[i])
ds.decodeObject(ods, vv, encoded.Values[i])
ds.waitObject(ods, encoded.Keys[i], nil)
ds.waitObject(ods, encoded.Values[i], nil)
// Set in the map.
obj.SetMapIndex(kv, vv)
}
}
// decodeArray decodes an array value.
func (ds *decodeState) decodeArray(ods *objectDecodeState, obj reflect.Value, encoded *wire.Array) {
if len(encoded.Contents) != obj.Len() {
Failf("mismatching array length expect=%d, actual=%d", obj.Len(), len(encoded.Contents))
}
// Decode the contents into the array.
for i := 0; i < len(encoded.Contents); i++ {
ds.decodeObject(ods, obj.Index(i), encoded.Contents[i])
ds.waitObject(ods, encoded.Contents[i], nil)
}
}
// findType finds the type for the given wire.TypeSpecs.
func (ds *decodeState) findType(t wire.TypeSpec) reflect.Type {
switch x := t.(type) {
case wire.TypeID:
typ := ds.types.LookupType(typeID(x))
rte := ds.types.Lookup(typeID(x), typ)
return rte.LocalType
case *wire.TypeSpecPointer:
return reflect.PtrTo(ds.findType(x.Type))
case *wire.TypeSpecArray:
return reflect.ArrayOf(int(x.Count), ds.findType(x.Type))
case *wire.TypeSpecSlice:
return reflect.SliceOf(ds.findType(x.Type))
case *wire.TypeSpecMap:
return reflect.MapOf(ds.findType(x.Key), ds.findType(x.Value))
default:
// Should not happen.
Failf("unknown type %#v", t)
}
panic("unreachable")
}
// decodeInterface decodes an interface value.
func (ds *decodeState) decodeInterface(ods *objectDecodeState, obj reflect.Value, encoded *wire.Interface) {
if _, ok := encoded.Type.(wire.TypeSpecNil); ok {
// Special case; the nil object. Just decode directly, which
// will read nil from the wire (if encoded correctly).
ds.decodeObject(ods, obj, encoded.Value)
return
}
// We now need to resolve the actual type.
typ := ds.findType(encoded.Type)
// We need to imbue type information here, then we can proceed to
// decode normally. In order to avoid issues with setting value-types,
// we create a new non-interface version of this object. We will then
// set the interface object to be equal to whatever we decode.
origObj := obj
obj = reflect.New(typ).Elem()
defer origObj.Set(obj)
// With the object now having sufficient type information to actually
// have Set called on it, we can proceed to decode the value.
ds.decodeObject(ods, obj, encoded.Value)
}
// isFloatEq determines if x and y represent the same value.
func isFloatEq(x float64, y float64) bool {
switch {
case math.IsNaN(x):
return math.IsNaN(y)
case math.IsInf(x, 1):
return math.IsInf(y, 1)
case math.IsInf(x, -1):
return math.IsInf(y, -1)
default:
return x == y
}
}
// isComplexEq determines if x and y represent the same value.
func isComplexEq(x complex128, y complex128) bool {
return isFloatEq(real(x), real(y)) && isFloatEq(imag(x), imag(y))
}
// decodeObject decodes a object value.
func (ds *decodeState) decodeObject(ods *objectDecodeState, obj reflect.Value, encoded wire.Object) {
switch x := encoded.(type) {
case wire.Nil: // Fast path: first.
// We leave obj alone here. That's because if obj represents an
// interface, it may have been imbued with type information in
// decodeInterface, and we don't want to destroy that.
case *wire.Ref:
// Nil pointers may be encoded in a "forceValue" context. For
// those we just leave it alone as the value will already be
// correct (nil).
if id := objectID(x.Root); id == 0 {
return
}
// Note that if this is a map type, we go through a level of
// indirection to allow for map aliasing.
if obj.Kind() == reflect.Map {
v := ds.register(x, obj.Type())
if v.IsNil() {
// Note that we don't want to clobber the map
// if has already been decoded by decodeMap. We
// just make it so that we have a consistent
// reference when that eventually does happen.
v.Set(reflect.MakeMap(v.Type()))
}
obj.Set(v)
return
}
// Normal assignment: authoritative only if no dots.
v := ds.register(x, obj.Type().Elem())
obj.Set(reflectValueRWAddr(v))
case wire.Bool:
obj.SetBool(bool(x))
case wire.Int:
obj.SetInt(int64(x))
if obj.Int() != int64(x) {
Failf("signed integer truncated from %v to %v", int64(x), obj.Int())
}
case wire.Uint:
obj.SetUint(uint64(x))
if obj.Uint() != uint64(x) {
Failf("unsigned integer truncated from %v to %v", uint64(x), obj.Uint())
}
case wire.Float32:
obj.SetFloat(float64(x))
case wire.Float64:
obj.SetFloat(float64(x))
if !isFloatEq(obj.Float(), float64(x)) {
Failf("floating point number truncated from %v to %v", float64(x), obj.Float())
}
case *wire.Complex64:
obj.SetComplex(complex128(*x))
case *wire.Complex128:
obj.SetComplex(complex128(*x))
if !isComplexEq(obj.Complex(), complex128(*x)) {
Failf("complex number truncated from %v to %v", complex128(*x), obj.Complex())
}
case *wire.String:
obj.SetString(string(*x))
case *wire.Slice:
// See *wire.Ref above; same applies.
if id := objectID(x.Ref.Root); id == 0 {
return
}
// Note that it's fine to slice the array here and assume that
// contents will still be filled in later on.
typ := reflect.ArrayOf(int(x.Capacity), obj.Type().Elem()) // The object type.
v := ds.register(&x.Ref, typ)
obj.Set(reflectValueRWSlice3(v, 0, int(x.Length), int(x.Capacity)))
case *wire.Array:
ds.decodeArray(ods, obj, x)
case *wire.Struct:
ds.decodeStruct(ods, obj, x)
case *wire.Map:
ds.decodeMap(ods, obj, x)
case *wire.Interface:
ds.decodeInterface(ods, obj, x)
default:
// Should not happen, not propagated as an error.
Failf("unknown object %#v for %q", encoded, obj.Type().Name())
}
}
// Load deserializes the object graph rooted at obj.
//
// This function may panic and should be run in safely().
func (ds *decodeState) Load(obj reflect.Value) {
ds.stats.init()
defer ds.stats.fini(func(id typeID) string {
return ds.types.LookupName(id)
})
// Create the root object.
rootOds := &objectDecodeState{
id: 1,
obj: obj,
}
ds.objectsByID = append(ds.objectsByID, rootOds)
ds.pending.PushBack(rootOds)
// Read the number of objects.
numObjects, object, err := ReadHeader(ds.r)
if err != nil {
Failf("header error: %w", err)
}
if !object {
Failf("object missing")
}
// Decode all objects.
var (
encoded wire.Object
ods *objectDecodeState
id objectID
tid = typeID(1)
)
if err := safely(func() {
// Decode all objects in the stream.
//
// Note that the structure of this decoding loop should match the raw
// decoding loop in state/pretty/pretty.printer.printStream().
for i := uint64(0); i < numObjects; {
// Unmarshal either a type object or object ID.
encoded = wire.Load(ds.r)
switch we := encoded.(type) {
case *wire.Type:
ds.types.Register(we)
tid++
encoded = nil
continue
case wire.Uint:
id = objectID(we)
i++
// Unmarshal and resolve the actual object.
encoded = wire.Load(ds.r)
ods = ds.lookup(id)
if ods != nil {
// Decode the object.
ds.decodeObject(ods, ods.obj, encoded)
} else {
// If an object hasn't had interest registered
// previously or isn't yet valid, we deferred
// decoding until interest is registered.
ds.deferred[id] = encoded
}
// For error handling.
ods = nil
encoded = nil
default:
Failf("wanted type or object ID, got %T", encoded)
}
}
}); err != nil {
// Include as much information as we can, taking into account
// the possible state transitions above.
if ods != nil {
Failf("error decoding object ID %d (%T) from %#v: %w", id, ods.obj.Interface(), encoded, err)
} else if encoded != nil {
Failf("error decoding from %#v: %w", encoded, err)
} else {
Failf("general decoding error: %w", err)
}
}
// Check if we have any deferred objects.
numDeferred := 0
for id, encoded := range ds.deferred {
numDeferred++
if s, ok := encoded.(*wire.Struct); ok && s.TypeID != 0 {
typ := ds.types.LookupType(typeID(s.TypeID))
Failf("unused deferred object: ID %d, type %v", id, typ)
} else {
Failf("unused deferred object: ID %d, %#v", id, encoded)
}
}
if numDeferred != 0 {
Failf("still had %d deferred objects", numDeferred)
}
// Scan and fire all callbacks. We iterate over the list of incomplete
// objects until all have been finished. We stop iterating if no
// objects become complete (there is a dependency cycle).
//
// Note that we iterate backwards here, because there will be a strong
// tendendcy for blocking relationships to go from earlier objects to
// later (deeper) objects in the graph. This will reduce the number of
// iterations required to finish all objects.
if err := safely(func() {
for ds.pending.Back() != nil {
thisCycle := false
for ods = ds.pending.Back(); ods != nil; {
if ds.checkComplete(ods) {
thisCycle = true
break
}
ods = ods.Prev()
}
if !thisCycle {
break
}
}
}); err != nil {
Failf("error executing callbacks: %w\nfor object %#v", err, ods.obj.Interface())
}
// Check if we have any remaining dependency cycles. If there are any
// objects left in the pending list, then it must be due to a cycle.
if ods := ds.pending.Front(); ods != nil {
// This must be the result of a dependency cycle.
cycle := ods.findCycle()
var buf bytes.Buffer
buf.WriteString("dependency cycle: {")
for i, cycleOS := range cycle {
if i > 0 {
buf.WriteString(" => ")
}
fmt.Fprintf(&buf, "%q", cycleOS.obj.Type())
}
buf.WriteString("}")
Failf("incomplete graph: %s", string(buf.Bytes()))
}
}
// ReadHeader reads an object header.
//
// Each object written to the statefile is prefixed with a header. See
// WriteHeader for more information; these functions are exported to allow
// non-state writes to the file to play nice with debugging tools.
func ReadHeader(r io.Reader) (length uint64, object bool, err error) {
// Read the header.
err = safely(func() {
length = wire.LoadUint(r)
})
if err != nil {
// On the header, pass raw I/O errors.
if sErr, ok := err.(*ErrState); ok {
return 0, false, sErr.Unwrap()
}
}
// Decode whether the object is valid.
object = length&objectFlag != 0
length &^= objectFlag
return
}
|