1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
// This file defines algorithms related to dominance.
// Dominator tree construction ----------------------------------------
//
// We use the algorithm described in Lengauer & Tarjan. 1979. A fast
// algorithm for finding dominators in a flowgraph.
// http://doi.acm.org/10.1145/357062.357071
//
// We also apply the optimizations to SLT described in Georgiadis et
// al, Finding Dominators in Practice, JGAA 2006,
// http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
// to avoid the need for buckets of size > 1.
import (
"bytes"
"fmt"
"io"
"math/big"
"os"
"sort"
)
// Idom returns the block that immediately dominates b:
// its parent in the dominator tree, if any.
// The entry node (b.Index==0) does not have a parent.
func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom }
// Dominees returns the list of blocks that b immediately dominates:
// its children in the dominator tree.
func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children }
// Dominates reports whether b dominates c.
func (b *BasicBlock) Dominates(c *BasicBlock) bool {
return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post
}
type byDomPreorder []*BasicBlock
func (a byDomPreorder) Len() int { return len(a) }
func (a byDomPreorder) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre }
// DomPreorder returns a new slice containing the blocks of f in
// dominator tree preorder.
func (f *Function) DomPreorder() []*BasicBlock {
n := len(f.Blocks)
order := make(byDomPreorder, n)
copy(order, f.Blocks)
sort.Sort(order)
return order
}
// domInfo contains a BasicBlock's dominance information.
type domInfo struct {
idom *BasicBlock // immediate dominator (parent in domtree)
children []*BasicBlock // nodes immediately dominated by this one
pre, post int32 // pre- and post-order numbering within domtree
}
// buildDomTree computes the dominator tree of f using the LT algorithm.
// Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
func buildDomTree(fn *Function) {
// The step numbers refer to the original LT paper; the
// reordering is due to Georgiadis.
// Clear any previous domInfo.
for _, b := range fn.Blocks {
b.dom = domInfo{}
}
idoms := make([]*BasicBlock, len(fn.Blocks))
order := make([]*BasicBlock, 0, len(fn.Blocks))
seen := fn.blockset(0)
var dfs func(b *BasicBlock)
dfs = func(b *BasicBlock) {
if !seen.Add(b) {
return
}
for _, succ := range b.Succs {
dfs(succ)
}
if fn.fakeExits.Has(b) {
dfs(fn.Exit)
}
order = append(order, b)
b.post = len(order) - 1
}
dfs(fn.Blocks[0])
for i := 0; i < len(order)/2; i++ {
o := len(order) - i - 1
order[i], order[o] = order[o], order[i]
}
idoms[fn.Blocks[0].Index] = fn.Blocks[0]
changed := true
for changed {
changed = false
// iterate over all nodes in reverse postorder, except for the
// entry node
for _, b := range order[1:] {
var newIdom *BasicBlock
do := func(p *BasicBlock) {
if idoms[p.Index] == nil {
return
}
if newIdom == nil {
newIdom = p
} else {
finger1 := p
finger2 := newIdom
for finger1 != finger2 {
for finger1.post < finger2.post {
finger1 = idoms[finger1.Index]
}
for finger2.post < finger1.post {
finger2 = idoms[finger2.Index]
}
}
newIdom = finger1
}
}
for _, p := range b.Preds {
do(p)
}
if b == fn.Exit {
for _, p := range fn.Blocks {
if fn.fakeExits.Has(p) {
do(p)
}
}
}
if idoms[b.Index] != newIdom {
idoms[b.Index] = newIdom
changed = true
}
}
}
for i, b := range idoms {
fn.Blocks[i].dom.idom = b
if b == nil {
// malformed CFG
continue
}
if i == b.Index {
continue
}
b.dom.children = append(b.dom.children, fn.Blocks[i])
}
numberDomTree(fn.Blocks[0], 0, 0)
// printDomTreeDot(os.Stderr, fn) // debugging
// printDomTreeText(os.Stderr, root, 0) // debugging
if fn.Prog.mode&SanityCheckFunctions != 0 {
sanityCheckDomTree(fn)
}
}
// buildPostDomTree is like buildDomTree, but builds the post-dominator tree instead.
func buildPostDomTree(fn *Function) {
// The step numbers refer to the original LT paper; the
// reordering is due to Georgiadis.
// Clear any previous domInfo.
for _, b := range fn.Blocks {
b.pdom = domInfo{}
}
idoms := make([]*BasicBlock, len(fn.Blocks))
order := make([]*BasicBlock, 0, len(fn.Blocks))
seen := fn.blockset(0)
var dfs func(b *BasicBlock)
dfs = func(b *BasicBlock) {
if !seen.Add(b) {
return
}
for _, pred := range b.Preds {
dfs(pred)
}
if b == fn.Exit {
for _, p := range fn.Blocks {
if fn.fakeExits.Has(p) {
dfs(p)
}
}
}
order = append(order, b)
b.post = len(order) - 1
}
dfs(fn.Exit)
for i := 0; i < len(order)/2; i++ {
o := len(order) - i - 1
order[i], order[o] = order[o], order[i]
}
idoms[fn.Exit.Index] = fn.Exit
changed := true
for changed {
changed = false
// iterate over all nodes in reverse postorder, except for the
// exit node
for _, b := range order[1:] {
var newIdom *BasicBlock
do := func(p *BasicBlock) {
if idoms[p.Index] == nil {
return
}
if newIdom == nil {
newIdom = p
} else {
finger1 := p
finger2 := newIdom
for finger1 != finger2 {
for finger1.post < finger2.post {
finger1 = idoms[finger1.Index]
}
for finger2.post < finger1.post {
finger2 = idoms[finger2.Index]
}
}
newIdom = finger1
}
}
for _, p := range b.Succs {
do(p)
}
if fn.fakeExits.Has(b) {
do(fn.Exit)
}
if idoms[b.Index] != newIdom {
idoms[b.Index] = newIdom
changed = true
}
}
}
for i, b := range idoms {
fn.Blocks[i].pdom.idom = b
if b == nil {
// malformed CFG
continue
}
if i == b.Index {
continue
}
b.pdom.children = append(b.pdom.children, fn.Blocks[i])
}
numberPostDomTree(fn.Exit, 0, 0)
// printPostDomTreeDot(os.Stderr, fn) // debugging
// printPostDomTreeText(os.Stderr, fn.Exit, 0) // debugging
if fn.Prog.mode&SanityCheckFunctions != 0 { // XXX
sanityCheckDomTree(fn) // XXX
}
}
// numberDomTree sets the pre- and post-order numbers of a depth-first
// traversal of the dominator tree rooted at v. These are used to
// answer dominance queries in constant time.
func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
v.dom.pre = pre
pre++
for _, child := range v.dom.children {
pre, post = numberDomTree(child, pre, post)
}
v.dom.post = post
post++
return pre, post
}
// numberPostDomTree sets the pre- and post-order numbers of a depth-first
// traversal of the post-dominator tree rooted at v. These are used to
// answer post-dominance queries in constant time.
func numberPostDomTree(v *BasicBlock, pre, post int32) (int32, int32) {
v.pdom.pre = pre
pre++
for _, child := range v.pdom.children {
pre, post = numberPostDomTree(child, pre, post)
}
v.pdom.post = post
post++
return pre, post
}
// Testing utilities ----------------------------------------
// sanityCheckDomTree checks the correctness of the dominator tree
// computed by the LT algorithm by comparing against the dominance
// relation computed by a naive Kildall-style forward dataflow
// analysis (Algorithm 10.16 from the "Dragon" book).
func sanityCheckDomTree(f *Function) {
n := len(f.Blocks)
// D[i] is the set of blocks that dominate f.Blocks[i],
// represented as a bit-set of block indices.
D := make([]big.Int, n)
one := big.NewInt(1)
// all is the set of all blocks; constant.
var all big.Int
all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
// Initialization.
for i := range f.Blocks {
if i == 0 {
// A root is dominated only by itself.
D[i].SetBit(&D[0], 0, 1)
} else {
// All other blocks are (initially) dominated
// by every block.
D[i].Set(&all)
}
}
// Iteration until fixed point.
for changed := true; changed; {
changed = false
for i, b := range f.Blocks {
if i == 0 {
continue
}
// Compute intersection across predecessors.
var x big.Int
x.Set(&all)
for _, pred := range b.Preds {
x.And(&x, &D[pred.Index])
}
if b == f.Exit {
for _, p := range f.Blocks {
if f.fakeExits.Has(p) {
x.And(&x, &D[p.Index])
}
}
}
x.SetBit(&x, i, 1) // a block always dominates itself.
if D[i].Cmp(&x) != 0 {
D[i].Set(&x)
changed = true
}
}
}
// Check the entire relation. O(n^2).
ok := true
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
b, c := f.Blocks[i], f.Blocks[j]
actual := b.Dominates(c)
expected := D[j].Bit(i) == 1
if actual != expected {
fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
ok = false
}
}
}
preorder := f.DomPreorder()
for _, b := range f.Blocks {
if got := preorder[b.dom.pre]; got != b {
fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b)
ok = false
}
}
if !ok {
panic("sanityCheckDomTree failed for " + f.String())
}
}
// Printing functions ----------------------------------------
// printDomTree prints the dominator tree as text, using indentation.
//
//lint:ignore U1000 used during debugging
func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) {
fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
for _, child := range v.dom.children {
printDomTreeText(buf, child, indent+1)
}
}
// printDomTreeDot prints the dominator tree of f in AT&T GraphViz
// (.dot) format.
//
//lint:ignore U1000 used during debugging
func printDomTreeDot(buf io.Writer, f *Function) {
fmt.Fprintln(buf, "//", f)
fmt.Fprintln(buf, "digraph domtree {")
for i, b := range f.Blocks {
v := b.dom
fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
// TODO(adonovan): improve appearance of edges
// belonging to both dominator tree and CFG.
// Dominator tree edge.
if i != 0 {
fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre)
}
// CFG edges.
for _, pred := range b.Preds {
fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre)
}
if f.fakeExits.Has(b) {
fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0,color=red];\n", b.dom.pre, f.Exit.dom.pre)
}
}
fmt.Fprintln(buf, "}")
}
// printDomTree prints the dominator tree as text, using indentation.
//
//lint:ignore U1000 used during debugging
func printPostDomTreeText(buf io.Writer, v *BasicBlock, indent int) {
fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v)
for _, child := range v.pdom.children {
printPostDomTreeText(buf, child, indent+1)
}
}
// printDomTreeDot prints the dominator tree of f in AT&T GraphViz
// (.dot) format.
//
//lint:ignore U1000 used during debugging
func printPostDomTreeDot(buf io.Writer, f *Function) {
fmt.Fprintln(buf, "//", f)
fmt.Fprintln(buf, "digraph pdomtree {")
for _, b := range f.Blocks {
v := b.pdom
fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post)
// TODO(adonovan): improve appearance of edges
// belonging to both dominator tree and CFG.
// Dominator tree edge.
if b != f.Exit {
fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.pdom.pre, v.pre)
}
// CFG edges.
for _, pred := range b.Preds {
fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.pdom.pre, v.pre)
}
if f.fakeExits.Has(b) {
fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0,color=red];\n", b.dom.pre, f.Exit.dom.pre)
}
}
fmt.Fprintln(buf, "}")
}
|