1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
// Helpers for emitting IR instructions.
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"honnef.co/go/tools/go/types/typeutil"
"golang.org/x/exp/typeparams"
)
// emitNew emits to f a new (heap Alloc) instruction allocating an
// object of type typ. pos is the optional source location.
func emitNew(f *Function, typ types.Type, source ast.Node) *Alloc {
v := &Alloc{Heap: true}
v.setType(types.NewPointer(typ))
f.emit(v, source)
return v
}
// emitLoad emits to f an instruction to load the address addr into a
// new temporary, and returns the value so defined.
func emitLoad(f *Function, addr Value, source ast.Node) *Load {
v := &Load{X: addr}
v.setType(deref(addr.Type()))
f.emit(v, source)
return v
}
func emitRecv(f *Function, ch Value, commaOk bool, typ types.Type, source ast.Node) Value {
recv := &Recv{
Chan: ch,
CommaOk: commaOk,
}
recv.setType(typ)
return f.emit(recv, source)
}
// emitDebugRef emits to f a DebugRef pseudo-instruction associating
// expression e with value v.
func emitDebugRef(f *Function, e ast.Expr, v Value, isAddr bool) {
ref := makeDebugRef(f, e, v, isAddr)
if ref == nil {
return
}
f.emit(ref, nil)
}
func makeDebugRef(f *Function, e ast.Expr, v Value, isAddr bool) *DebugRef {
if !f.debugInfo() {
return nil // debugging not enabled
}
if v == nil || e == nil {
panic("nil")
}
var obj types.Object
e = unparen(e)
if id, ok := e.(*ast.Ident); ok {
if isBlankIdent(id) {
return nil
}
obj = f.Pkg.objectOf(id)
switch obj.(type) {
case *types.Nil, *types.Const, *types.Builtin:
return nil
}
}
return &DebugRef{
X: v,
Expr: e,
IsAddr: isAddr,
object: obj,
}
}
// emitArith emits to f code to compute the binary operation op(x, y)
// where op is an eager shift, logical or arithmetic operation.
// (Use emitCompare() for comparisons and Builder.logicalBinop() for
// non-eager operations.)
func emitArith(f *Function, op token.Token, x, y Value, t types.Type, source ast.Node) Value {
switch op {
case token.SHL, token.SHR:
x = emitConv(f, x, t, source)
// y may be signed or an 'untyped' constant.
// There is a runtime panic if y is signed and <0. Instead of inserting a check for y<0
// and converting to an unsigned value (like the compiler) leave y as is.
if b, ok := y.Type().Underlying().(*types.Basic); ok && b.Info()&types.IsUntyped != 0 {
// Untyped conversion:
// Spec https://go.dev/ref/spec#Operators:
// The right operand in a shift expression must have integer type or be an untyped constant
// representable by a value of type uint.
y = emitConv(f, y, types.Typ[types.Uint], source)
}
case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
x = emitConv(f, x, t, source)
y = emitConv(f, y, t, source)
default:
panic("illegal op in emitArith: " + op.String())
}
v := &BinOp{
Op: op,
X: x,
Y: y,
}
v.setType(t)
return f.emit(v, source)
}
// emitCompare emits to f code compute the boolean result of
// comparison comparison 'x op y'.
func emitCompare(f *Function, op token.Token, x, y Value, source ast.Node) Value {
xt := x.Type().Underlying()
yt := y.Type().Underlying()
// Special case to optimise a tagless SwitchStmt so that
// these are equivalent
// switch { case e: ...}
// switch true { case e: ... }
// if e==true { ... }
// even in the case when e's type is an interface.
// TODO(adonovan): opt: generalise to x==true, false!=y, etc.
if x, ok := x.(*Const); ok && op == token.EQL && x.Value != nil && x.Value.Kind() == constant.Bool && constant.BoolVal(x.Value) {
if yt, ok := yt.(*types.Basic); ok && yt.Info()&types.IsBoolean != 0 {
return y
}
}
if types.Identical(xt, yt) {
// no conversion necessary
} else if _, ok := xt.(*types.Interface); ok && !typeparams.IsTypeParam(x.Type()) {
y = emitConv(f, y, x.Type(), source)
} else if _, ok := yt.(*types.Interface); ok && !typeparams.IsTypeParam(y.Type()) {
x = emitConv(f, x, y.Type(), source)
} else if _, ok := x.(*Const); ok {
x = emitConv(f, x, y.Type(), source)
} else if _, ok := y.(*Const); ok {
y = emitConv(f, y, x.Type(), source)
//lint:ignore SA9003 no-op
} else {
// other cases, e.g. channels. No-op.
}
v := &BinOp{
Op: op,
X: x,
Y: y,
}
v.setType(tBool)
return f.emit(v, source)
}
// isValuePreserving returns true if a conversion from ut_src to
// ut_dst is value-preserving, i.e. just a change of type.
// Precondition: neither argument is a named type.
func isValuePreserving(ut_src, ut_dst types.Type) bool {
// Identical underlying types?
if types.IdenticalIgnoreTags(ut_dst, ut_src) {
return true
}
switch ut_dst.(type) {
case *types.Chan:
// Conversion between channel types?
_, ok := ut_src.(*types.Chan)
return ok
case *types.Pointer:
// Conversion between pointers with identical base types?
_, ok := ut_src.(*types.Pointer)
return ok
}
return false
}
// emitConv emits to f code to convert Value val to exactly type typ,
// and returns the converted value. Implicit conversions are required
// by language assignability rules in assignments, parameter passing,
// etc.
func emitConv(f *Function, val Value, t_dst types.Type, source ast.Node) Value {
t_src := val.Type()
// Identical types? Conversion is a no-op.
if types.Identical(t_src, t_dst) {
return val
}
ut_dst := t_dst.Underlying()
ut_src := t_src.Underlying()
tset_dst := typeutil.NewTypeSet(ut_dst)
tset_src := typeutil.NewTypeSet(ut_src)
// Just a change of type, but not value or representation?
if tset_src.All(func(termSrc *types.Term) bool {
return tset_dst.All(func(termDst *types.Term) bool {
return isValuePreserving(termSrc.Type().Underlying(), termDst.Type().Underlying())
})
}) {
c := &ChangeType{X: val}
c.setType(t_dst)
return f.emit(c, source)
}
// Conversion to, or construction of a value of, an interface type?
if _, ok := ut_dst.(*types.Interface); ok && !typeparams.IsTypeParam(t_dst) {
// Assignment from one interface type to another?
if _, ok := ut_src.(*types.Interface); ok && !typeparams.IsTypeParam(t_src) {
c := &ChangeInterface{X: val}
c.setType(t_dst)
return f.emit(c, source)
}
// Untyped nil constant? Return interface-typed nil constant.
if ut_src == tUntypedNil {
return emitConst(f, nilConst(t_dst))
}
// Convert (non-nil) "untyped" literals to their default type.
if t, ok := ut_src.(*types.Basic); ok && t.Info()&types.IsUntyped != 0 {
val = emitConv(f, val, types.Default(ut_src), source)
}
f.Pkg.Prog.needMethodsOf(val.Type())
mi := &MakeInterface{X: val}
mi.setType(t_dst)
return f.emit(mi, source)
}
// Conversion of a compile-time constant value? Note that converting a constant to a type parameter never results in
// a constant value.
if c, ok := val.(*Const); ok {
if _, ok := ut_dst.(*types.Basic); ok || c.IsNil() {
// Conversion of a compile-time constant to
// another constant type results in a new
// constant of the destination type and
// (initially) the same abstract value.
// We don't truncate the value yet.
return emitConst(f, NewConst(c.Value, t_dst))
}
// We're converting from constant to non-constant type,
// e.g. string -> []byte/[]rune.
}
// Conversion from slice to array pointer?
if tset_src.All(func(termSrc *types.Term) bool {
return tset_dst.All(func(termDst *types.Term) bool {
if slice, ok := termSrc.Type().Underlying().(*types.Slice); ok {
if ptr, ok := termDst.Type().Underlying().(*types.Pointer); ok {
if arr, ok := ptr.Elem().Underlying().(*types.Array); ok && types.Identical(slice.Elem(), arr.Elem()) {
return true
}
}
}
return false
})
}) {
c := &SliceToArrayPointer{X: val}
c.setType(t_dst)
return f.emit(c, source)
}
// Conversion from slice to array. This is almost the same as converting from slice to array pointer, then
// dereferencing the pointer. Except that a nil slice can be converted to [0]T, whereas converting a nil slice to
// (*[0]T) results in a nil pointer, dereferencing which would panic. To hide the extra branching we use a dedicated
// instruction, SliceToArray.
if tset_src.All(func(termSrc *types.Term) bool {
return tset_dst.All(func(termDst *types.Term) bool {
if slice, ok := termSrc.Type().Underlying().(*types.Slice); ok {
if arr, ok := termDst.Type().Underlying().(*types.Array); ok && types.Identical(slice.Elem(), arr.Elem()) {
return true
}
}
return false
})
}) {
c := &SliceToArray{X: val}
c.setType(t_dst)
return f.emit(c, source)
}
// A representation-changing conversion?
// At least one of {ut_src,ut_dst} must be *Basic.
// (The other may be []byte or []rune.)
ok1 := tset_src.Any(func(term *types.Term) bool { _, ok := term.Type().Underlying().(*types.Basic); return ok })
ok2 := tset_dst.Any(func(term *types.Term) bool { _, ok := term.Type().Underlying().(*types.Basic); return ok })
if ok1 || ok2 {
c := &Convert{X: val}
c.setType(t_dst)
return f.emit(c, source)
}
panic(fmt.Sprintf("in %s: cannot convert %s (%s) to %s", f, val, val.Type(), t_dst))
}
// emitStore emits to f an instruction to store value val at location
// addr, applying implicit conversions as required by assignability rules.
func emitStore(f *Function, addr, val Value, source ast.Node) *Store {
s := &Store{
Addr: addr,
Val: emitConv(f, val, deref(addr.Type()), source),
}
f.emit(s, source)
return s
}
// emitJump emits to f a jump to target, and updates the control-flow graph.
// Postcondition: f.currentBlock is nil.
func emitJump(f *Function, target *BasicBlock, source ast.Node) *Jump {
b := f.currentBlock
j := new(Jump)
b.emit(j, source)
addEdge(b, target)
f.currentBlock = nil
return j
}
// emitIf emits to f a conditional jump to tblock or fblock based on
// cond, and updates the control-flow graph.
// Postcondition: f.currentBlock is nil.
func emitIf(f *Function, cond Value, tblock, fblock *BasicBlock, source ast.Node) *If {
b := f.currentBlock
stmt := &If{Cond: cond}
b.emit(stmt, source)
addEdge(b, tblock)
addEdge(b, fblock)
f.currentBlock = nil
return stmt
}
// emitExtract emits to f an instruction to extract the index'th
// component of tuple. It returns the extracted value.
func emitExtract(f *Function, tuple Value, index int, source ast.Node) Value {
e := &Extract{Tuple: tuple, Index: index}
e.setType(tuple.Type().(*types.Tuple).At(index).Type())
return f.emit(e, source)
}
// emitTypeAssert emits to f a type assertion value := x.(t) and
// returns the value. x.Type() must be an interface.
func emitTypeAssert(f *Function, x Value, t types.Type, source ast.Node) Value {
a := &TypeAssert{X: x, AssertedType: t}
a.setType(t)
return f.emit(a, source)
}
// emitTypeTest emits to f a type test value,ok := x.(t) and returns
// a (value, ok) tuple. x.Type() must be an interface.
func emitTypeTest(f *Function, x Value, t types.Type, source ast.Node) Value {
a := &TypeAssert{
X: x,
AssertedType: t,
CommaOk: true,
}
a.setType(types.NewTuple(
newVar("value", t),
varOk,
))
return f.emit(a, source)
}
// emitTailCall emits to f a function call in tail position. The
// caller is responsible for all fields of 'call' except its type.
// Intended for wrapper methods.
// Precondition: f does/will not use deferred procedure calls.
// Postcondition: f.currentBlock is nil.
func emitTailCall(f *Function, call *Call, source ast.Node) {
tresults := f.Signature.Results()
nr := tresults.Len()
if nr == 1 {
call.typ = tresults.At(0).Type()
} else {
call.typ = tresults
}
tuple := f.emit(call, source)
var ret Return
switch nr {
case 0:
// no-op
case 1:
ret.Results = []Value{tuple}
default:
for i := 0; i < nr; i++ {
v := emitExtract(f, tuple, i, source)
// TODO(adonovan): in principle, this is required:
// v = emitConv(f, o.Type, f.Signature.Results[i].Type)
// but in practice emitTailCall is only used when
// the types exactly match.
ret.Results = append(ret.Results, v)
}
}
f.Exit = f.newBasicBlock("exit")
emitJump(f, f.Exit, source)
f.currentBlock = f.Exit
f.emit(&ret, source)
f.currentBlock = nil
}
// emitImplicitSelections emits to f code to apply the sequence of
// implicit field selections specified by indices to base value v, and
// returns the selected value.
//
// If v is the address of a struct, the result will be the address of
// a field; if it is the value of a struct, the result will be the
// value of a field.
func emitImplicitSelections(f *Function, v Value, indices []int, source ast.Node) Value {
for _, index := range indices {
// We may have a generic type containing a pointer, or a pointer to a generic type containing a struct. A
// pointer to a generic containing a pointer to a struct shouldn't be possible because the outer pointer gets
// dereferenced implicitly before we get here.
fld := typeutil.CoreType(deref(v.Type())).Underlying().(*types.Struct).Field(index)
if isPointer(v.Type()) {
instr := &FieldAddr{
X: v,
Field: index,
}
instr.setType(types.NewPointer(fld.Type()))
v = f.emit(instr, source)
// Load the field's value iff indirectly embedded.
if isPointer(fld.Type()) {
v = emitLoad(f, v, source)
}
} else {
instr := &Field{
X: v,
Field: index,
}
instr.setType(fld.Type())
v = f.emit(instr, source)
}
}
return v
}
// emitFieldSelection emits to f code to select the index'th field of v.
//
// If wantAddr, the input must be a pointer-to-struct and the result
// will be the field's address; otherwise the result will be the
// field's value.
// Ident id is used for position and debug info.
func emitFieldSelection(f *Function, v Value, index int, wantAddr bool, id *ast.Ident) Value {
// We may have a generic type containing a pointer, or a pointer to a generic type containing a struct. A
// pointer to a generic containing a pointer to a struct shouldn't be possible because the outer pointer gets
// dereferenced implicitly before we get here.
vut := typeutil.CoreType(deref(v.Type())).Underlying().(*types.Struct)
fld := vut.Field(index)
if isPointer(v.Type()) {
instr := &FieldAddr{
X: v,
Field: index,
}
instr.setSource(id)
instr.setType(types.NewPointer(fld.Type()))
v = f.emit(instr, id)
// Load the field's value iff we don't want its address.
if !wantAddr {
v = emitLoad(f, v, id)
}
} else {
instr := &Field{
X: v,
Field: index,
}
instr.setSource(id)
instr.setType(fld.Type())
v = f.emit(instr, id)
}
emitDebugRef(f, id, v, wantAddr)
return v
}
// zeroValue emits to f code to produce a zero value of type t,
// and returns it.
func zeroValue(f *Function, t types.Type, source ast.Node) Value {
return emitConst(f, zeroConst(t))
}
type constKey struct {
typ types.Type
value constant.Value
}
func emitConst(f *Function, c Constant) Constant {
if f.consts == nil {
f.consts = map[constKey]constValue{}
}
typ := c.Type()
var val constant.Value
switch c := c.(type) {
case *Const:
val = c.Value
case *ArrayConst, *GenericConst:
// These can only represent zero values, so all we need is the type
case *AggregateConst:
candidates, _ := f.aggregateConsts.At(c.typ)
for _, candidate := range candidates {
if c.equal(candidate) {
return candidate
}
}
for i := range c.Values {
c.Values[i] = emitConst(f, c.Values[i].(Constant))
}
c.setBlock(f.Blocks[0])
rands := c.Operands(nil)
updateOperandsReferrers(c, rands)
candidates = append(candidates, c)
f.aggregateConsts.Set(c.typ, candidates)
return c
default:
panic(fmt.Sprintf("unexpected type %T", c))
}
k := constKey{
typ: typ,
value: val,
}
dup, ok := f.consts[k]
if ok {
return dup.c
} else {
c.setBlock(f.Blocks[0])
f.consts[k] = constValue{
c: c,
idx: len(f.consts),
}
rands := c.Operands(nil)
updateOperandsReferrers(c, rands)
return c
}
}
|