1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
// This file defines the lifting pass which tries to "lift" Alloc
// cells (new/local variables) into SSA registers, replacing loads
// with the dominating stored value, eliminating loads and stores, and
// inserting φ- and σ-nodes as needed.
// Cited papers and resources:
//
// Ron Cytron et al. 1991. Efficiently computing SSA form...
// http://doi.acm.org/10.1145/115372.115320
//
// Cooper, Harvey, Kennedy. 2001. A Simple, Fast Dominance Algorithm.
// Software Practice and Experience 2001, 4:1-10.
// http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
//
// Daniel Berlin, llvmdev mailing list, 2012.
// http://lists.cs.uiuc.edu/pipermail/llvmdev/2012-January/046638.html
// (Be sure to expand the whole thread.)
//
// C. Scott Ananian. 1997. The static single information form.
//
// Jeremy Singer. 2006. Static program analysis based on virtual register renaming.
// TODO(adonovan): opt: there are many optimizations worth evaluating, and
// the conventional wisdom for SSA construction is that a simple
// algorithm well engineered often beats those of better asymptotic
// complexity on all but the most egregious inputs.
//
// Danny Berlin suggests that the Cooper et al. algorithm for
// computing the dominance frontier is superior to Cytron et al.
// Furthermore he recommends that rather than computing the DF for the
// whole function then renaming all alloc cells, it may be cheaper to
// compute the DF for each alloc cell separately and throw it away.
//
// Consider exploiting liveness information to avoid creating dead
// φ-nodes which we then immediately remove.
//
// Also see many other "TODO: opt" suggestions in the code.
import (
"encoding/binary"
"fmt"
"os"
)
// If true, show diagnostic information at each step of lifting.
// Very verbose.
const debugLifting = false
// domFrontier maps each block to the set of blocks in its dominance
// frontier. The outer slice is conceptually a map keyed by
// Block.Index. The inner slice is conceptually a set, possibly
// containing duplicates.
//
// TODO(adonovan): opt: measure impact of dups; consider a packed bit
// representation, e.g. big.Int, and bitwise parallel operations for
// the union step in the Children loop.
//
// domFrontier's methods mutate the slice's elements but not its
// length, so their receivers needn't be pointers.
type domFrontier BlockMap[[]*BasicBlock]
func (df domFrontier) add(u, v *BasicBlock) {
df[u.Index] = append(df[u.Index], v)
}
// build builds the dominance frontier df for the dominator tree of
// fn, using the algorithm found in A Simple, Fast Dominance
// Algorithm, Figure 5.
//
// TODO(adonovan): opt: consider Berlin approach, computing pruned SSA
// by pruning the entire IDF computation, rather than merely pruning
// the DF -> IDF step.
func (df domFrontier) build(fn *Function) {
for _, b := range fn.Blocks {
preds := b.Preds[0:len(b.Preds):len(b.Preds)]
if b == fn.Exit {
for i, v := range fn.fakeExits.values {
if v {
preds = append(preds, fn.Blocks[i])
}
}
}
if len(preds) >= 2 {
for _, p := range preds {
runner := p
for runner != b.dom.idom {
df.add(runner, b)
runner = runner.dom.idom
}
}
}
}
}
func buildDomFrontier(fn *Function) domFrontier {
df := make(domFrontier, len(fn.Blocks))
df.build(fn)
return df
}
type postDomFrontier BlockMap[[]*BasicBlock]
func (rdf postDomFrontier) add(u, v *BasicBlock) {
rdf[u.Index] = append(rdf[u.Index], v)
}
func (rdf postDomFrontier) build(fn *Function) {
for _, b := range fn.Blocks {
succs := b.Succs[0:len(b.Succs):len(b.Succs)]
if fn.fakeExits.Has(b) {
succs = append(succs, fn.Exit)
}
if len(succs) >= 2 {
for _, s := range succs {
runner := s
for runner != b.pdom.idom {
rdf.add(runner, b)
runner = runner.pdom.idom
}
}
}
}
}
func buildPostDomFrontier(fn *Function) postDomFrontier {
rdf := make(postDomFrontier, len(fn.Blocks))
rdf.build(fn)
return rdf
}
func removeInstr(refs []Instruction, instr Instruction) []Instruction {
i := 0
for _, ref := range refs {
if ref == instr {
continue
}
refs[i] = ref
i++
}
for j := i; j != len(refs); j++ {
refs[j] = nil // aid GC
}
return refs[:i]
}
func clearInstrs(instrs []Instruction) {
for i := range instrs {
instrs[i] = nil
}
}
func numberNodesPerBlock(f *Function) {
for _, b := range f.Blocks {
var base ID
for _, instr := range b.Instrs {
if instr == nil {
continue
}
instr.setID(base)
base++
}
}
}
// lift replaces local and new Allocs accessed only with
// load/store by IR registers, inserting φ- and σ-nodes where necessary.
// The result is a program in pruned SSI form.
//
// Preconditions:
// - fn has no dead blocks (blockopt has run).
// - Def/use info (Operands and Referrers) is up-to-date.
// - The dominator tree is up-to-date.
func lift(fn *Function) bool {
// TODO(adonovan): opt: lots of little optimizations may be
// worthwhile here, especially if they cause us to avoid
// buildDomFrontier. For example:
//
// - Alloc never loaded? Eliminate.
// - Alloc never stored? Replace all loads with a zero constant.
// - Alloc stored once? Replace loads with dominating store;
// don't forget that an Alloc is itself an effective store
// of zero.
// - Alloc used only within a single block?
// Use degenerate algorithm avoiding φ-nodes.
// - Consider synergy with scalar replacement of aggregates (SRA).
// e.g. *(&x.f) where x is an Alloc.
// Perhaps we'd get better results if we generated this as x.f
// i.e. Field(x, .f) instead of Load(FieldIndex(x, .f)).
// Unclear.
//
// But we will start with the simplest correct code.
var df domFrontier
var rdf postDomFrontier
var closure *closure
var newPhis BlockMap[[]newPhi]
var newSigmas BlockMap[[]newSigma]
// During this pass we will replace some BasicBlock.Instrs
// (allocs, loads and stores) with nil, keeping a count in
// BasicBlock.gaps. At the end we will reset Instrs to the
// concatenation of all non-dead newPhis and non-nil Instrs
// for the block, reusing the original array if space permits.
// While we're here, we also eliminate 'rundefers'
// instructions in functions that contain no 'defer'
// instructions.
usesDefer := false
// Determine which allocs we can lift and number them densely.
// The renaming phase uses this numbering for compact maps.
numAllocs := 0
instructions := make(BlockMap[liftInstructions], len(fn.Blocks))
for i := range instructions {
instructions[i].insertInstructions = map[Instruction][]Instruction{}
}
// Number nodes, for liftable
numberNodesPerBlock(fn)
for _, b := range fn.Blocks {
b.gaps = 0
b.rundefers = 0
for _, instr := range b.Instrs {
switch instr := instr.(type) {
case *Alloc:
if !liftable(instr, instructions) {
instr.index = -1
continue
}
if numAllocs == 0 {
df = buildDomFrontier(fn)
rdf = buildPostDomFrontier(fn)
if len(fn.Blocks) > 2 {
closure = transitiveClosure(fn)
}
newPhis = make(BlockMap[[]newPhi], len(fn.Blocks))
newSigmas = make(BlockMap[[]newSigma], len(fn.Blocks))
if debugLifting {
title := false
for i, blocks := range df {
if blocks != nil {
if !title {
fmt.Fprintf(os.Stderr, "Dominance frontier of %s:\n", fn)
title = true
}
fmt.Fprintf(os.Stderr, "\t%s: %s\n", fn.Blocks[i], blocks)
}
}
}
}
instr.index = numAllocs
numAllocs++
case *Defer:
usesDefer = true
case *RunDefers:
b.rundefers++
}
}
}
if numAllocs > 0 {
for _, b := range fn.Blocks {
work := instructions[b.Index]
for _, rename := range work.renameAllocs {
for _, instr_ := range b.Instrs[rename.startingAt:] {
replace(instr_, rename.from, rename.to)
}
}
}
for _, b := range fn.Blocks {
work := instructions[b.Index]
if len(work.insertInstructions) != 0 {
newInstrs := make([]Instruction, 0, len(fn.Blocks)+len(work.insertInstructions)*3)
for _, instr := range b.Instrs {
if add, ok := work.insertInstructions[instr]; ok {
newInstrs = append(newInstrs, add...)
}
newInstrs = append(newInstrs, instr)
}
b.Instrs = newInstrs
}
}
// TODO(dh): remove inserted allocs that end up unused after lifting.
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
if instr, ok := instr.(*Alloc); ok && instr.index >= 0 {
liftAlloc(closure, df, rdf, instr, newPhis, newSigmas)
}
}
}
// renaming maps an alloc (keyed by index) to its replacement
// value. Initially the renaming contains nil, signifying the
// zero constant of the appropriate type; we construct the
// Const lazily at most once on each path through the domtree.
// TODO(adonovan): opt: cache per-function not per subtree.
renaming := make([]Value, numAllocs)
// Renaming.
rename(fn.Blocks[0], renaming, newPhis, newSigmas)
simplifyPhisAndSigmas(newPhis, newSigmas)
// Eliminate dead φ- and σ-nodes.
markLiveNodes(fn.Blocks, newPhis, newSigmas)
}
// Prepend remaining live φ-nodes to each block and possibly kill rundefers.
for _, b := range fn.Blocks {
var head []Instruction
if numAllocs > 0 {
nps := newPhis[b.Index]
head = make([]Instruction, 0, len(nps))
for _, pred := range b.Preds {
nss := newSigmas[pred.Index]
idx := pred.succIndex(b)
for _, newSigma := range nss {
if sigma := newSigma.sigmas[idx]; sigma != nil && sigma.live {
head = append(head, sigma)
// we didn't populate referrers before, as most
// sigma nodes will be killed
if refs := sigma.X.Referrers(); refs != nil {
*refs = append(*refs, sigma)
}
} else if sigma != nil {
sigma.block = nil
}
}
}
for _, np := range nps {
if np.phi.live {
head = append(head, np.phi)
} else {
for _, edge := range np.phi.Edges {
if refs := edge.Referrers(); refs != nil {
*refs = removeInstr(*refs, np.phi)
}
}
np.phi.block = nil
}
}
}
rundefersToKill := b.rundefers
if usesDefer {
rundefersToKill = 0
}
j := len(head)
if j+b.gaps+rundefersToKill == 0 {
continue // fast path: no new phis or gaps
}
// We could do straight copies instead of element-wise copies
// when both b.gaps and rundefersToKill are zero. However,
// that seems to only be the case ~1% of the time, which
// doesn't seem worth the extra branch.
// Remove dead instructions, add phis and sigmas
ns := len(b.Instrs) + j - b.gaps - rundefersToKill
if ns <= cap(b.Instrs) {
// b.Instrs has enough capacity to store all instructions
// OPT(dh): check cap vs the actually required space; if
// there is a big enough difference, it may be worth
// allocating a new slice, to avoid pinning memory.
dst := b.Instrs[:cap(b.Instrs)]
i := len(dst) - 1
for n := len(b.Instrs) - 1; n >= 0; n-- {
instr := dst[n]
if instr == nil {
continue
}
if !usesDefer {
if _, ok := instr.(*RunDefers); ok {
continue
}
}
dst[i] = instr
i--
}
off := i + 1 - len(head)
// aid GC
clearInstrs(dst[:off])
dst = dst[off:]
copy(dst, head)
b.Instrs = dst
} else {
// not enough space, so allocate a new slice and copy
// over.
dst := make([]Instruction, ns)
copy(dst, head)
for _, instr := range b.Instrs {
if instr == nil {
continue
}
if !usesDefer {
if _, ok := instr.(*RunDefers); ok {
continue
}
}
dst[j] = instr
j++
}
b.Instrs = dst
}
}
// Remove any fn.Locals that were lifted.
j := 0
for _, l := range fn.Locals {
if l.index < 0 {
fn.Locals[j] = l
j++
}
}
// Nil out fn.Locals[j:] to aid GC.
for i := j; i < len(fn.Locals); i++ {
fn.Locals[i] = nil
}
fn.Locals = fn.Locals[:j]
return numAllocs > 0
}
func hasDirectReferrer(instr Instruction) bool {
for _, instr := range *instr.Referrers() {
switch instr.(type) {
case *Phi, *Sigma:
// ignore
default:
return true
}
}
return false
}
func markLiveNodes(blocks []*BasicBlock, newPhis BlockMap[[]newPhi], newSigmas BlockMap[[]newSigma]) {
// Phis and sigmas may become dead due to optimization passes. We may also insert more nodes than strictly
// necessary, e.g. sigma nodes for constants, which will never be used.
// Phi and sigma nodes are considered live if a non-phi, non-sigma
// node uses them. Once we find a node that is live, we mark all
// of its operands as used, too.
for _, npList := range newPhis {
for _, np := range npList {
phi := np.phi
if !phi.live && hasDirectReferrer(phi) {
markLivePhi(phi)
}
}
}
for _, npList := range newSigmas {
for _, np := range npList {
for _, sigma := range np.sigmas {
if sigma != nil && !sigma.live && hasDirectReferrer(sigma) {
markLiveSigma(sigma)
}
}
}
}
// Existing φ-nodes due to && and || operators
// are all considered live (see Go issue 19622).
for _, b := range blocks {
for _, phi := range b.phis() {
markLivePhi(phi.(*Phi))
}
}
}
func markLivePhi(phi *Phi) {
phi.live = true
for _, rand := range phi.Edges {
switch rand := rand.(type) {
case *Phi:
if !rand.live {
markLivePhi(rand)
}
case *Sigma:
if !rand.live {
markLiveSigma(rand)
}
}
}
}
func markLiveSigma(sigma *Sigma) {
sigma.live = true
switch rand := sigma.X.(type) {
case *Phi:
if !rand.live {
markLivePhi(rand)
}
case *Sigma:
if !rand.live {
markLiveSigma(rand)
}
}
}
// simplifyPhisAndSigmas removes duplicate phi and sigma nodes,
// and replaces trivial phis with non-phi alternatives. Phi
// nodes where all edges are identical, or consist of only the phi
// itself and one other value, may be replaced with the value.
func simplifyPhisAndSigmas(newPhis BlockMap[[]newPhi], newSigmas BlockMap[[]newSigma]) {
// temporary numbering of values used in phis so that we can build map keys
var id ID
for _, npList := range newPhis {
for _, np := range npList {
for _, edge := range np.phi.Edges {
edge.setID(id)
id++
}
}
}
// find all phis that are trivial and can be replaced with a
// non-phi value. run until we reach a fixpoint, because replacing
// a phi may make other phis trivial.
for changed := true; changed; {
changed = false
for _, npList := range newPhis {
for _, np := range npList {
if np.phi.live {
// we're reusing 'live' to mean 'dead' in the context of simplifyPhisAndSigmas
continue
}
if r, ok := isUselessPhi(np.phi); ok {
// useless phi, replace its uses with the
// replacement value. the dead phi pass will clean
// up the phi afterwards.
replaceAll(np.phi, r)
np.phi.live = true
changed = true
}
}
}
// Replace duplicate sigma nodes with a single node. These nodes exist when multiple allocs get replaced with the
// same dominating store.
for _, sigmaList := range newSigmas {
primarySigmas := map[struct {
succ int
v Value
}]*Sigma{}
for _, sigmas := range sigmaList {
for succ, sigma := range sigmas.sigmas {
if sigma == nil {
continue
}
if sigma.live {
// we're reusing 'live' to mean 'dead' in the context of simplifyPhisAndSigmas
continue
}
key := struct {
succ int
v Value
}{succ, sigma.X}
if alt, ok := primarySigmas[key]; ok {
replaceAll(sigma, alt)
sigma.live = true
changed = true
} else {
primarySigmas[key] = sigma
}
}
}
}
// Replace duplicate phi nodes with a single node. As far as we know, these duplicate nodes only ever exist
// because of the previous sigma deduplication.
keyb := make([]byte, 0, 4*8)
for _, npList := range newPhis {
primaryPhis := map[string]*Phi{}
for _, np := range npList {
if np.phi.live {
continue
}
if n := len(np.phi.Edges) * 8; cap(keyb) >= n {
keyb = keyb[:n]
} else {
keyb = make([]byte, n, n*2)
}
for i, e := range np.phi.Edges {
binary.LittleEndian.PutUint64(keyb[i*8:i*8+8], uint64(e.ID()))
}
if alt, ok := primaryPhis[string(keyb)]; ok {
replaceAll(np.phi, alt)
np.phi.live = true
changed = true
} else {
primaryPhis[string(keyb)] = np.phi
}
}
}
}
for _, npList := range newPhis {
for _, np := range npList {
np.phi.live = false
for _, edge := range np.phi.Edges {
edge.setID(0)
}
}
}
for _, sigmaList := range newSigmas {
for _, sigmas := range sigmaList {
for _, sigma := range sigmas.sigmas {
if sigma != nil {
sigma.live = false
}
}
}
}
}
type BlockSet struct {
idx int
values []bool
count int
}
func NewBlockSet(size int) *BlockSet {
return &BlockSet{values: make([]bool, size)}
}
func (s *BlockSet) Set(s2 *BlockSet) {
copy(s.values, s2.values)
s.count = 0
for _, v := range s.values {
if v {
s.count++
}
}
}
func (s *BlockSet) Num() int {
return s.count
}
func (s *BlockSet) Has(b *BasicBlock) bool {
if b.Index >= len(s.values) {
return false
}
return s.values[b.Index]
}
// add adds b to the set and returns true if the set changed.
func (s *BlockSet) Add(b *BasicBlock) bool {
if s.values[b.Index] {
return false
}
s.count++
s.values[b.Index] = true
s.idx = b.Index
return true
}
func (s *BlockSet) Clear() {
for j := range s.values {
s.values[j] = false
}
s.count = 0
}
// take removes an arbitrary element from a set s and
// returns its index, or returns -1 if empty.
func (s *BlockSet) Take() int {
// [i, end]
for i := s.idx; i < len(s.values); i++ {
if s.values[i] {
s.values[i] = false
s.idx = i
s.count--
return i
}
}
// [start, i)
for i := 0; i < s.idx; i++ {
if s.values[i] {
s.values[i] = false
s.idx = i
s.count--
return i
}
}
return -1
}
type closure struct {
span []uint32
reachables BlockMap[interval]
}
type interval uint32
const (
flagMask = 1 << 31
numBits = 20
lengthBits = 32 - numBits - 1
lengthMask = (1<<lengthBits - 1) << numBits
numMask = 1<<numBits - 1
)
func (c closure) has(s, v *BasicBlock) bool {
idx := uint32(v.Index)
if idx == 1 || s.Dominates(v) {
return true
}
r := c.reachable(s.Index)
for i := 0; i < len(r); i++ {
inv := r[i]
var start, end uint32
if inv&flagMask == 0 {
// small interval
start = uint32(inv & numMask)
end = start + uint32(inv&lengthMask)>>numBits
} else {
// large interval
i++
start = uint32(inv & numMask)
end = uint32(r[i])
}
if idx >= start && idx <= end {
return true
}
}
return false
}
func (c closure) reachable(id int) []interval {
return c.reachables[c.span[id]:c.span[id+1]]
}
func (c closure) walk(current *BasicBlock, b *BasicBlock, visited []bool) {
// TODO(dh): the 'current' argument seems to be unused
// TODO(dh): there's no reason for this to be a method
visited[b.Index] = true
for _, succ := range b.Succs {
if visited[succ.Index] {
continue
}
visited[succ.Index] = true
c.walk(current, succ, visited)
}
}
func transitiveClosure(fn *Function) *closure {
reachable := make(BlockMap[bool], len(fn.Blocks))
c := &closure{}
c.span = make([]uint32, len(fn.Blocks)+1)
addInterval := func(start, end uint32) {
if l := end - start; l <= 1<<lengthBits-1 {
n := interval(l<<numBits | start)
c.reachables = append(c.reachables, n)
} else {
n1 := interval(1<<31 | start)
n2 := interval(end)
c.reachables = append(c.reachables, n1, n2)
}
}
for i, b := range fn.Blocks[1:] {
for i := range reachable {
reachable[i] = false
}
c.walk(b, b, reachable)
start := ^uint32(0)
for id, isReachable := range reachable {
if !isReachable {
if start != ^uint32(0) {
end := uint32(id) - 1
addInterval(start, end)
start = ^uint32(0)
}
continue
} else if start == ^uint32(0) {
start = uint32(id)
}
}
if start != ^uint32(0) {
addInterval(start, uint32(len(reachable))-1)
}
c.span[i+2] = uint32(len(c.reachables))
}
return c
}
// newPhi is a pair of a newly introduced φ-node and the lifted Alloc
// it replaces.
type newPhi struct {
phi *Phi
alloc *Alloc
}
type newSigma struct {
alloc *Alloc
sigmas []*Sigma
}
type liftInstructions struct {
insertInstructions map[Instruction][]Instruction
renameAllocs []struct {
from *Alloc
to *Alloc
startingAt int
}
}
// liftable determines if alloc can be lifted, and records instructions to split partially liftable allocs.
//
// In the trivial case, all uses of the alloc can be lifted. This is the case when it is only used for storing into and
// loading from. In that case, no instructions are recorded.
//
// In the more complex case, the alloc is used for storing into and loading from, but it is also used as a value, for
// example because it gets passed to a function, e.g. fn(&x). In this case, uses of the alloc fall into one of two
// categories: those that can be lifted and those that can't. A boundary forms between these two categories in the
// function's control flow: Once an unliftable use is encountered, the alloc is no longer liftable for the remainder of
// the basic block the use is in, nor in any blocks reachable from it.
//
// We record instructions that split the alloc into two allocs: one that is used in liftable uses, and one that is used
// in unliftable uses. Whenever we encounter a boundary between liftable and unliftable uses or blocks, we emit a pair
// of Load and Store that copy the value from the liftable alloc into the unliftable alloc. Taking these instructions
// into account, the normal lifting machinery will completely lift the liftable alloc, store the correct lifted values
// into the unliftable alloc, and will not at all lift the unliftable alloc.
//
// In Go syntax, the transformation looks somewhat like this:
//
// func foo() {
// x := 32
// if cond {
// println(x)
// escape(&x)
// println(x)
// } else {
// println(x)
// }
// println(x)
// }
//
// transforms into
//
// func fooSplitAlloc() {
// x := 32
// var x_ int
// if cond {
// println(x)
// x_ = x
// escape(&x_)
// println(x_)
// } else {
// println(x)
// x_ = x
// }
// println(x_)
// }
func liftable(alloc *Alloc, instructions BlockMap[liftInstructions]) bool {
fn := alloc.block.parent
// Don't lift named return values in functions that defer
// calls that may recover from panic.
if fn.hasDefer {
for _, nr := range fn.namedResults {
if nr == alloc {
return false
}
}
}
type blockDesc struct {
// is the block (partially) unliftable, because it contains unliftable instructions or is reachable by an unliftable block
isUnliftable bool
hasLiftableLoad bool
hasLiftableOther bool
// we need to emit stores in predecessors because the unliftable use is in a phi
storeInPreds bool
lastLiftable int
firstUnliftable int
}
blocks := make(BlockMap[blockDesc], len(fn.Blocks))
for _, b := range fn.Blocks {
blocks[b.Index].lastLiftable = -1
blocks[b.Index].firstUnliftable = len(b.Instrs) + 1
}
// Look at all uses of the alloc and deduce which blocks have liftable or unliftable instructions.
for _, instr := range alloc.referrers {
// Find the first unliftable use
desc := &blocks[instr.Block().Index]
hasUnliftable := false
inHead := false
switch instr := instr.(type) {
case *Store:
if instr.Val == alloc {
hasUnliftable = true
}
case *Load:
case *DebugRef:
case *Phi, *Sigma:
inHead = true
hasUnliftable = true
default:
hasUnliftable = true
}
if hasUnliftable {
desc.isUnliftable = true
if int(instr.ID()) < desc.firstUnliftable {
desc.firstUnliftable = int(instr.ID())
}
if inHead {
desc.storeInPreds = true
desc.firstUnliftable = 0
}
}
}
for _, instr := range alloc.referrers {
// Find the last liftable use, taking the previously calculated firstUnliftable into consideration
desc := &blocks[instr.Block().Index]
if int(instr.ID()) >= desc.firstUnliftable {
continue
}
hasLiftable := false
switch instr := instr.(type) {
case *Store:
if instr.Val != alloc {
desc.hasLiftableOther = true
hasLiftable = true
}
case *Load:
desc.hasLiftableLoad = true
hasLiftable = true
case *DebugRef:
desc.hasLiftableOther = true
}
if hasLiftable {
if int(instr.ID()) > desc.lastLiftable {
desc.lastLiftable = int(instr.ID())
}
}
}
for i := range blocks {
// Update firstUnliftable to be one after lastLiftable. We do this to include the unliftable's preceding
// DebugRefs in the renaming.
blocks[i].firstUnliftable = blocks[i].lastLiftable + 1
}
// If a block is reachable by a (partially) unliftable block, then the entirety of the block is unliftable. In that
// case, stores have to be inserted in the predecessors.
//
// TODO(dh): this isn't always necessary. If the block is reachable by itself, i.e. part of a loop, then if the
// Alloc instruction is itself part of that loop, then there is a subset of instructions in the loop that can be
// lifted. For example:
//
// for {
// x := 42
// println(x)
// escape(&x)
// }
//
// The x that escapes in one iteration of the loop isn't the same x that we read from on the next iteration.
seen := make(BlockMap[bool], len(fn.Blocks))
var dfs func(b *BasicBlock)
dfs = func(b *BasicBlock) {
if seen[b.Index] {
return
}
seen[b.Index] = true
desc := &blocks[b.Index]
desc.hasLiftableLoad = false
desc.hasLiftableOther = false
desc.isUnliftable = true
desc.firstUnliftable = 0
desc.storeInPreds = true
for _, succ := range b.Succs {
dfs(succ)
}
}
for _, b := range fn.Blocks {
if blocks[b.Index].isUnliftable {
for _, succ := range b.Succs {
dfs(succ)
}
}
}
hasLiftableLoad := false
hasLiftableOther := false
hasUnliftable := false
for _, b := range fn.Blocks {
desc := blocks[b.Index]
hasLiftableLoad = hasLiftableLoad || desc.hasLiftableLoad
hasLiftableOther = hasLiftableOther || desc.hasLiftableOther
if desc.isUnliftable {
hasUnliftable = true
}
}
if !hasLiftableLoad && !hasLiftableOther {
// There are no liftable uses
return false
} else if !hasUnliftable {
// The alloc is entirely liftable without splitting
return true
} else if !hasLiftableLoad {
// The alloc is not entirely liftable, and the only liftable uses are stores. While some of those stores could
// get lifted away, it would also lead to an infinite loop when lifting to a fixpoint, because the newly created
// allocs also get stored into repeatable and that's their only liftable uses.
return false
}
// We need to insert stores for the new alloc. If a (partially) unliftable block has no unliftable
// predecessors and the use isn't in a phi node, then the store can be inserted right before the unliftable use.
// Otherwise, stores have to be inserted at the end of all liftable predecessors.
newAlloc := &Alloc{Heap: true}
newAlloc.setBlock(alloc.block)
newAlloc.setType(alloc.typ)
newAlloc.setSource(alloc.source)
newAlloc.index = -1
newAlloc.comment = "split alloc"
{
work := instructions[alloc.block.Index]
work.insertInstructions[alloc] = append(work.insertInstructions[alloc], newAlloc)
}
predHasStore := make(BlockMap[bool], len(fn.Blocks))
for _, b := range fn.Blocks {
desc := &blocks[b.Index]
bWork := &instructions[b.Index]
if desc.isUnliftable {
bWork.renameAllocs = append(bWork.renameAllocs, struct {
from *Alloc
to *Alloc
startingAt int
}{
alloc, newAlloc, int(desc.firstUnliftable),
})
}
if !desc.isUnliftable {
continue
}
propagate := func(in *BasicBlock, before Instruction) {
load := &Load{
X: alloc,
}
store := &Store{
Addr: newAlloc,
Val: load,
}
load.setType(deref(alloc.typ))
load.setBlock(in)
load.comment = "split alloc"
store.setBlock(in)
updateOperandReferrers(load)
updateOperandReferrers(store)
store.comment = "split alloc"
entry := &instructions[in.Index]
entry.insertInstructions[before] = append(entry.insertInstructions[before], load, store)
}
if desc.storeInPreds {
// emit stores at the end of liftable preds
for _, pred := range b.Preds {
if blocks[pred.Index].isUnliftable {
continue
}
if !alloc.block.Dominates(pred) {
// Consider this cfg:
//
// 1
// /|
// / |
// ↙ ↓
// 2--→3
//
// with an Alloc in block 2. It doesn't make sense to insert a store in block 1 for the jump to
// block 3, because 1 can never see the Alloc in the first place.
//
// Ignoring phi nodes, an Alloc always dominates all of its uses, and phi nodes don't matter here,
// because for the incoming edges that do matter, we do emit the stores.
continue
}
if predHasStore[pred.Index] {
// Don't generate redundant propagations. Not only is it unnecessary, it can lead to infinite loops
// when trying to lift to a fix point, because redundant stores are liftable.
continue
}
predHasStore[pred.Index] = true
before := pred.Instrs[len(pred.Instrs)-1]
propagate(pred, before)
}
} else {
// emit store before the first unliftable use
before := b.Instrs[desc.firstUnliftable]
propagate(b, before)
}
}
return true
}
// liftAlloc lifts alloc into registers and populates newPhis and newSigmas with all the φ- and σ-nodes it may require.
func liftAlloc(closure *closure, df domFrontier, rdf postDomFrontier, alloc *Alloc, newPhis BlockMap[[]newPhi], newSigmas BlockMap[[]newSigma]) {
fn := alloc.Parent()
defblocks := fn.blockset(0)
useblocks := fn.blockset(1)
Aphi := fn.blockset(2)
Asigma := fn.blockset(3)
W := fn.blockset(4)
// Compute defblocks, the set of blocks containing a
// definition of the alloc cell.
for _, instr := range *alloc.Referrers() {
switch instr := instr.(type) {
case *Store:
defblocks.Add(instr.Block())
case *Load:
useblocks.Add(instr.Block())
for _, ref := range *instr.Referrers() {
useblocks.Add(ref.Block())
}
}
}
// The Alloc itself counts as a (zero) definition of the cell.
defblocks.Add(alloc.Block())
if debugLifting {
fmt.Fprintln(os.Stderr, "\tlifting ", alloc, alloc.Name())
}
// Φ-insertion.
//
// What follows is the body of the main loop of the insert-φ
// function described by Cytron et al, but instead of using
// counter tricks, we just reset the 'hasAlready' and 'work'
// sets each iteration. These are bitmaps so it's pretty cheap.
// Initialize W and work to defblocks.
for change := true; change; {
change = false
{
// Traverse iterated dominance frontier, inserting φ-nodes.
W.Set(defblocks)
for i := W.Take(); i != -1; i = W.Take() {
n := fn.Blocks[i]
for _, y := range df[n.Index] {
if Aphi.Add(y) {
if len(*alloc.Referrers()) == 0 {
continue
}
live := false
if closure == nil {
live = true
} else {
for _, ref := range *alloc.Referrers() {
if _, ok := ref.(*Load); ok {
if closure.has(y, ref.Block()) {
live = true
break
}
}
}
}
if !live {
continue
}
// Create φ-node.
// It will be prepended to v.Instrs later, if needed.
phi := &Phi{
Edges: make([]Value, len(y.Preds)),
}
phi.source = alloc.source
phi.setType(deref(alloc.Type()))
phi.block = y
if debugLifting {
fmt.Fprintf(os.Stderr, "\tplace %s = %s at block %s\n", phi.Name(), phi, y)
}
newPhis[y.Index] = append(newPhis[y.Index], newPhi{phi, alloc})
for _, p := range y.Preds {
useblocks.Add(p)
}
change = true
if defblocks.Add(y) {
W.Add(y)
}
}
}
}
}
{
W.Set(useblocks)
for i := W.Take(); i != -1; i = W.Take() {
n := fn.Blocks[i]
for _, y := range rdf[n.Index] {
if Asigma.Add(y) {
sigmas := make([]*Sigma, 0, len(y.Succs))
anyLive := false
for _, succ := range y.Succs {
live := false
for _, ref := range *alloc.Referrers() {
if closure == nil || closure.has(succ, ref.Block()) {
live = true
anyLive = true
break
}
}
if live {
sigma := &Sigma{
From: y,
X: alloc,
}
sigma.source = alloc.source
sigma.setType(deref(alloc.Type()))
sigma.block = succ
sigmas = append(sigmas, sigma)
} else {
sigmas = append(sigmas, nil)
}
}
if anyLive {
newSigmas[y.Index] = append(newSigmas[y.Index], newSigma{alloc, sigmas})
for _, s := range y.Succs {
defblocks.Add(s)
}
change = true
if useblocks.Add(y) {
W.Add(y)
}
}
}
}
}
}
}
}
// replaceAll replaces all intraprocedural uses of x with y,
// updating x.Referrers and y.Referrers.
// Precondition: x.Referrers() != nil, i.e. x must be local to some function.
func replaceAll(x, y Value) {
var rands []*Value
pxrefs := x.Referrers()
pyrefs := y.Referrers()
for _, instr := range *pxrefs {
switch instr := instr.(type) {
case *CompositeValue:
// Special case CompositeValue because it might have very large lists of operands
//
// OPT(dh): this loop is still expensive for large composite values
for i, rand := range instr.Values {
if rand == x {
instr.Values[i] = y
}
}
default:
rands = instr.Operands(rands[:0]) // recycle storage
for _, rand := range rands {
if *rand != nil {
if *rand == x {
*rand = y
}
}
}
}
if pyrefs != nil {
*pyrefs = append(*pyrefs, instr) // dups ok
}
}
*pxrefs = nil // x is now unreferenced
}
func replace(instr Instruction, x, y Value) {
args := instr.Operands(nil)
matched := false
for _, arg := range args {
if *arg == x {
*arg = y
matched = true
}
}
if matched {
yrefs := y.Referrers()
if yrefs != nil {
*yrefs = append(*yrefs, instr)
}
xrefs := x.Referrers()
if xrefs != nil {
*xrefs = removeInstr(*xrefs, instr)
}
}
}
// renamed returns the value to which alloc is being renamed,
// constructing it lazily if it's the implicit zero initialization.
func renamed(fn *Function, renaming []Value, alloc *Alloc) Value {
v := renaming[alloc.index]
if v == nil {
v = emitConst(fn, zeroConst(deref(alloc.Type())))
renaming[alloc.index] = v
}
return v
}
func copyValue(v Value, why Instruction, info CopyInfo) *Copy {
c := &Copy{
X: v,
Why: why,
Info: info,
}
if refs := v.Referrers(); refs != nil {
*refs = append(*refs, c)
}
c.setType(v.Type())
c.setSource(v.Source())
return c
}
func splitOnNewInformation(u *BasicBlock, renaming *StackMap) {
renaming.Push()
defer renaming.Pop()
rename := func(v Value, why Instruction, info CopyInfo, i int) {
c := copyValue(v, why, info)
c.setBlock(u)
renaming.Set(v, c)
u.Instrs = append(u.Instrs, nil)
copy(u.Instrs[i+2:], u.Instrs[i+1:])
u.Instrs[i+1] = c
}
replacement := func(v Value) (Value, bool) {
r, ok := renaming.Get(v)
if !ok {
return nil, false
}
for {
rr, ok := renaming.Get(r)
if !ok {
// Store replacement in the map so that future calls to replacement(v) don't have to go through the
// iterative process again.
renaming.Set(v, r)
return r, true
}
r = rr
}
}
var hasInfo func(v Value, info CopyInfo) bool
hasInfo = func(v Value, info CopyInfo) bool {
switch v := v.(type) {
case *Copy:
return (v.Info&info) == info || hasInfo(v.X, info)
case *FieldAddr, *IndexAddr, *TypeAssert, *MakeChan, *MakeMap, *MakeSlice, *Alloc:
return info == CopyInfoNotNil
case Member, *Builtin:
return info == CopyInfoNotNil
case *Sigma:
return hasInfo(v.X, info)
default:
return false
}
}
var args []*Value
for i := 0; i < len(u.Instrs); i++ {
instr := u.Instrs[i]
if instr == nil {
continue
}
args = instr.Operands(args[:0])
for _, arg := range args {
if *arg == nil {
continue
}
if r, ok := replacement(*arg); ok {
*arg = r
replace(instr, *arg, r)
}
}
// TODO write some bits on why we copy values instead of encoding the actual control flow and panics
switch instr := instr.(type) {
case *IndexAddr:
// Note that we rename instr.Index and instr.X even if they're already copies, because unique combinations
// of X and Index may lead to unique information.
// OPT we should rename both variables at once and avoid one memmove
rename(instr.Index, instr, CopyInfoNotNegative, i)
rename(instr.X, instr, CopyInfoNotNil, i)
i += 2 // skip over instructions we just inserted
case *FieldAddr:
if !hasInfo(instr.X, CopyInfoNotNil) {
rename(instr.X, instr, CopyInfoNotNil, i)
i++
}
case *TypeAssert:
// If we've already type asserted instr.X without comma-ok before, then it can only contain a single type,
// and successive type assertions, no matter the type, don't tell us anything new.
if !hasInfo(instr.X, CopyInfoNotNil|CopyInfoSingleConcreteType) {
rename(instr.X, instr, CopyInfoNotNil|CopyInfoSingleConcreteType, i)
i++ // skip over instruction we just inserted
}
case *Load:
if !hasInfo(instr.X, CopyInfoNotNil) {
rename(instr.X, instr, CopyInfoNotNil, i)
i++
}
case *Store:
if !hasInfo(instr.Addr, CopyInfoNotNil) {
rename(instr.Addr, instr, CopyInfoNotNil, i)
i++
}
case *MapUpdate:
if !hasInfo(instr.Map, CopyInfoNotNil) {
rename(instr.Map, instr, CopyInfoNotNil, i)
i++
}
case CallInstruction:
off := 0
if !instr.Common().IsInvoke() && !hasInfo(instr.Common().Value, CopyInfoNotNil) {
rename(instr.Common().Value, instr, CopyInfoNotNil, i)
off++
}
if f, ok := instr.Common().Value.(*Builtin); ok {
switch f.name {
case "close":
arg := instr.Common().Args[0]
if !hasInfo(arg, CopyInfoNotNil|CopyInfoClosed) {
rename(arg, instr, CopyInfoNotNil|CopyInfoClosed, i)
off++
}
}
}
i += off
case *SliceToArrayPointer:
// A slice to array pointer conversion tells us the minimum length of the slice
rename(instr.X, instr, CopyInfoUnspecified, i)
i++
case *SliceToArray:
// A slice to array conversion tells us the minimum length of the slice
rename(instr.X, instr, CopyInfoUnspecified, i)
i++
case *Slice:
// Slicing tells us about some of the bounds
off := 0
if instr.Low == nil && instr.High == nil && instr.Max == nil {
// If all indices are unspecified, then we can only learn something about instr.X if it might've been
// nil.
if !hasInfo(instr.X, CopyInfoNotNil) {
rename(instr.X, instr, CopyInfoUnspecified, i)
off++
}
} else {
rename(instr.X, instr, CopyInfoUnspecified, i)
off++
}
// We copy the indices even if we already know they are not negative, because we can associate numeric
// ranges with them.
if instr.Low != nil {
rename(instr.Low, instr, CopyInfoNotNegative, i)
off++
}
if instr.High != nil {
rename(instr.High, instr, CopyInfoNotNegative, i)
off++
}
if instr.Max != nil {
rename(instr.Max, instr, CopyInfoNotNegative, i)
off++
}
i += off
case *StringLookup:
rename(instr.X, instr, CopyInfoUnspecified, i)
rename(instr.Index, instr, CopyInfoNotNegative, i)
i += 2
case *Recv:
if !hasInfo(instr.Chan, CopyInfoNotNil) {
// Receiving from a nil channel never completes
rename(instr.Chan, instr, CopyInfoNotNil, i)
i++
}
case *Send:
if !hasInfo(instr.Chan, CopyInfoNotNil) {
// Sending to a nil channel never completes. Sending to a closed channel panics, but whether a channel
// is closed isn't local to this function, so we didn't learn anything.
rename(instr.Chan, instr, CopyInfoNotNil, i)
i++
}
}
}
for _, v := range u.dom.children {
splitOnNewInformation(v, renaming)
}
}
// rename implements the Cytron et al-based SSI renaming algorithm, a
// preorder traversal of the dominator tree replacing all loads of
// Alloc cells with the value stored to that cell by the dominating
// store instruction.
//
// renaming is a map from *Alloc (keyed by index number) to its
// dominating stored value; newPhis[x] is the set of new φ-nodes to be
// prepended to block x.
func rename(u *BasicBlock, renaming []Value, newPhis BlockMap[[]newPhi], newSigmas BlockMap[[]newSigma]) {
// Each φ-node becomes the new name for its associated Alloc.
for _, np := range newPhis[u.Index] {
phi := np.phi
alloc := np.alloc
renaming[alloc.index] = phi
}
// Rename loads and stores of allocs.
for i, instr := range u.Instrs {
switch instr := instr.(type) {
case *Alloc:
if instr.index >= 0 { // store of zero to Alloc cell
// Replace dominated loads by the zero value.
renaming[instr.index] = nil
if debugLifting {
fmt.Fprintf(os.Stderr, "\tkill alloc %s\n", instr)
}
// Delete the Alloc.
u.Instrs[i] = nil
u.gaps++
}
case *Store:
if alloc, ok := instr.Addr.(*Alloc); ok && alloc.index >= 0 { // store to Alloc cell
// Replace dominated loads by the stored value.
renaming[alloc.index] = instr.Val
if debugLifting {
fmt.Fprintf(os.Stderr, "\tkill store %s; new value: %s\n",
instr, instr.Val.Name())
}
if refs := instr.Addr.Referrers(); refs != nil {
*refs = removeInstr(*refs, instr)
}
if refs := instr.Val.Referrers(); refs != nil {
*refs = removeInstr(*refs, instr)
}
// Delete the Store.
u.Instrs[i] = nil
u.gaps++
}
case *Load:
if alloc, ok := instr.X.(*Alloc); ok && alloc.index >= 0 { // load of Alloc cell
// In theory, we wouldn't be able to replace loads directly, because a loaded value could be used in
// different branches, in which case it should be replaced with different sigma nodes. But we can't
// simply defer replacement, either, because then later stores might incorrectly affect this load.
//
// To avoid doing renaming on _all_ values (instead of just loads and stores like we're doing), we make
// sure during code generation that each load is only used in one block. For example, in constant switch
// statements, where the tag is only evaluated once, we store it in a temporary and load it for each
// comparison, so that we have individual loads to replace.
//
// Because we only rename stores and loads, the end result will not contain sigma nodes for all
// constants. Some constants may be used directly, e.g. in comparisons such as 'x == 5'. We may still
// end up inserting dead sigma nodes in branches, but these will never get used in renaming and will be
// cleaned up when we remove dead phis and sigmas.
newval := renamed(u.Parent(), renaming, alloc)
if debugLifting {
fmt.Fprintf(os.Stderr, "\tupdate load %s = %s with %s\n",
instr.Name(), instr, newval)
}
replaceAll(instr, newval)
u.Instrs[i] = nil
u.gaps++
}
case *DebugRef:
if x, ok := instr.X.(*Alloc); ok && x.index >= 0 {
if instr.IsAddr {
instr.X = renamed(u.Parent(), renaming, x)
instr.IsAddr = false
// Add DebugRef to instr.X's referrers.
if refs := instr.X.Referrers(); refs != nil {
*refs = append(*refs, instr)
}
} else {
// A source expression denotes the address
// of an Alloc that was optimized away.
instr.X = nil
// Delete the DebugRef.
u.Instrs[i] = nil
u.gaps++
}
}
}
}
// update all outgoing sigma nodes with the dominating store
for _, sigmas := range newSigmas[u.Index] {
for _, sigma := range sigmas.sigmas {
if sigma == nil {
continue
}
sigma.X = renamed(u.Parent(), renaming, sigmas.alloc)
}
}
// For each φ-node in a CFG successor, rename the edge.
for succi, v := range u.Succs {
phis := newPhis[v.Index]
if len(phis) == 0 {
continue
}
i := v.predIndex(u)
for _, np := range phis {
phi := np.phi
alloc := np.alloc
// if there's a sigma node, use it, else use the dominating value
var newval Value
for _, sigmas := range newSigmas[u.Index] {
if sigmas.alloc == alloc && sigmas.sigmas[succi] != nil {
newval = sigmas.sigmas[succi]
break
}
}
if newval == nil {
newval = renamed(u.Parent(), renaming, alloc)
}
if debugLifting {
fmt.Fprintf(os.Stderr, "\tsetphi %s edge %s -> %s (#%d) (alloc=%s) := %s\n",
phi.Name(), u, v, i, alloc.Name(), newval.Name())
}
phi.Edges[i] = newval
if prefs := newval.Referrers(); prefs != nil {
*prefs = append(*prefs, phi)
}
}
}
// Continue depth-first recursion over domtree, pushing a
// fresh copy of the renaming map for each subtree.
r := make([]Value, len(renaming))
for _, v := range u.dom.children {
copy(r, renaming)
// on entry to a block, the incoming sigma nodes become the new values for their alloc
if idx := u.succIndex(v); idx != -1 {
for _, sigma := range newSigmas[u.Index] {
if sigma.sigmas[idx] != nil {
r[sigma.alloc.index] = sigma.sigmas[idx]
}
}
}
rename(v, r, newPhis, newSigmas)
}
}
func simplifyConstantCompositeValues(fn *Function) bool {
changed := false
for _, b := range fn.Blocks {
n := 0
for _, instr := range b.Instrs {
replaced := false
if cv, ok := instr.(*CompositeValue); ok {
ac := &AggregateConst{}
ac.typ = cv.typ
replaced = true
for _, v := range cv.Values {
if c, ok := v.(Constant); ok {
ac.Values = append(ac.Values, c)
} else {
replaced = false
break
}
}
if replaced {
replaceAll(cv, emitConst(fn, ac))
killInstruction(cv)
}
}
if replaced {
changed = true
} else {
b.Instrs[n] = instr
n++
}
}
clearInstrs(b.Instrs[n:])
b.Instrs = b.Instrs[:n]
}
return changed
}
func updateOperandReferrers(instr Instruction) {
for _, op := range instr.Operands(nil) {
refs := (*op).Referrers()
if refs != nil {
*refs = append(*refs, instr)
}
}
}
|