1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
|
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ir
// This package defines a high-level intermediate representation for
// Go programs using static single-information (SSI) form.
import (
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"math/big"
"sync"
"honnef.co/go/tools/go/types/typeutil"
)
const (
// Replace CompositeValue with only constant values with AggregateConst. Currently disabled because it breaks field
// tracking in U1000.
doSimplifyConstantCompositeValues = false
)
type ID int
// A Program is a partial or complete Go program converted to IR form.
type Program struct {
Fset *token.FileSet // position information for the files of this Program
PrintFunc string // create ir.html for function specified in PrintFunc
imported map[string]*Package // all importable Packages, keyed by import path
packages map[*types.Package]*Package // all loaded Packages, keyed by object
mode BuilderMode // set of mode bits for IR construction
MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets
methodsMu sync.Mutex // guards the following maps:
methodSets typeutil.Map[*methodSet] // maps type to its concrete methodSet
runtimeTypes typeutil.Map[bool] // types for which rtypes are needed
canon typeutil.Map[types.Type] // type canonicalization map
bounds map[*types.Func]*Function // bounds for curried x.Method closures
thunks map[selectionKey]*Function // thunks for T.Method expressions
}
// A Package is a single analyzed Go package containing Members for
// all package-level functions, variables, constants and types it
// declares. These may be accessed directly via Members, or via the
// type-specific accessor methods Func, Type, Var and Const.
//
// Members also contains entries for "init" (the synthetic package
// initializer) and "init#%d", the nth declared init function,
// and unspecified other things too.
type Package struct {
Prog *Program // the owning program
Pkg *types.Package // the corresponding go/types.Package
Members map[string]Member // all package members keyed by name (incl. init and init#%d)
Functions []*Function // all functions, excluding anonymous ones
values map[types.Object]Value // package members (incl. types and methods), keyed by object
init *Function // Func("init"); the package's init function
debug bool // include full debug info in this package
printFunc string // which function to print in HTML form
// The following fields are set transiently, then cleared
// after building.
buildOnce sync.Once // ensures package building occurs once
ninit int32 // number of init functions
info *types.Info // package type information
files []*ast.File // package ASTs
}
// A Member is a member of a Go package, implemented by *NamedConst,
// *Global, *Function, or *Type; they are created by package-level
// const, var, func and type declarations respectively.
type Member interface {
Name() string // declared name of the package member
String() string // package-qualified name of the package member
RelString(*types.Package) string // like String, but relative refs are unqualified
Object() types.Object // typechecker's object for this member, if any
Type() types.Type // type of the package member
Token() token.Token // token.{VAR,FUNC,CONST,TYPE}
Package() *Package // the containing package
}
// A Type is a Member of a Package representing a package-level named type.
type Type struct {
object *types.TypeName
pkg *Package
}
// A NamedConst is a Member of a Package representing a package-level
// named constant.
//
// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
// identifier.
//
// NB: a NamedConst is not a Value; it contains a constant Value, which
// it augments with the name and position of its 'const' declaration.
type NamedConst struct {
object *types.Const
Value *Const
pkg *Package
}
// A Value is an IR value that can be referenced by an instruction.
type Value interface {
setID(ID)
// Name returns the name of this value, and determines how
// this Value appears when used as an operand of an
// Instruction.
//
// This is the same as the source name for Parameters,
// Builtins, Functions, FreeVars, Globals.
// For constants, it is a representation of the constant's value
// and type. For all other Values this is the name of the
// virtual register defined by the instruction.
//
// The name of an IR Value is not semantically significant,
// and may not even be unique within a function.
Name() string
// ID returns the ID of this value. IDs are unique within a single
// function and are densely numbered, but may contain gaps.
// Values and other Instructions share the same ID space.
// Globally, values are identified by their addresses. However,
// IDs exist to facilitate efficient storage of mappings between
// values and data when analysing functions.
//
// NB: IDs are allocated late in the IR construction process and
// are not available to early stages of said process.
ID() ID
// If this value is an Instruction, String returns its
// disassembled form; otherwise it returns unspecified
// human-readable information about the Value, such as its
// kind, name and type.
String() string
// Type returns the type of this value. Many instructions
// (e.g. IndexAddr) change their behaviour depending on the
// types of their operands.
Type() types.Type
// Parent returns the function to which this Value belongs.
// It returns nil for named Functions, Builtin and Global.
Parent() *Function
// Referrers returns the list of instructions that have this
// value as one of their operands; it may contain duplicates
// if an instruction has a repeated operand.
//
// Referrers actually returns a pointer through which the
// caller may perform mutations to the object's state.
//
// Referrers is currently only defined if Parent()!=nil,
// i.e. for the function-local values FreeVar, Parameter,
// Functions (iff anonymous) and all value-defining instructions.
// It returns nil for named Functions, Builtin and Global.
//
// Instruction.Operands contains the inverse of this relation.
Referrers() *[]Instruction
Operands(rands []*Value) []*Value // nil for non-Instructions
// Source returns the AST node responsible for creating this
// value. A single AST node may be responsible for more than one
// value, and not all values have an associated AST node.
//
// Do not use this method to find a Value given an ast.Expr; use
// ValueForExpr instead.
Source() ast.Node
// Pos returns Source().Pos() if Source is not nil, else it
// returns token.NoPos.
Pos() token.Pos
}
// An Instruction is an IR instruction that computes a new Value or
// has some effect.
//
// An Instruction that defines a value (e.g. BinOp) also implements
// the Value interface; an Instruction that only has an effect (e.g. Store)
// does not.
type Instruction interface {
setSource(ast.Node)
setID(ID)
Comment() string
// String returns the disassembled form of this value.
//
// Examples of Instructions that are Values:
// "BinOp <int> {+} t1 t2" (BinOp)
// "Call <int> len t1" (Call)
// Note that the name of the Value is not printed.
//
// Examples of Instructions that are not Values:
// "Return t1" (Return)
// "Store {int} t2 t1" (Store)
//
// (The separation of Value.Name() from Value.String() is useful
// for some analyses which distinguish the operation from the
// value it defines, e.g., 'y = local int' is both an allocation
// of memory 'local int' and a definition of a pointer y.)
String() string
// ID returns the ID of this instruction. IDs are unique within a single
// function and are densely numbered, but may contain gaps.
// Globally, instructions are identified by their addresses. However,
// IDs exist to facilitate efficient storage of mappings between
// instructions and data when analysing functions.
//
// NB: IDs are allocated late in the IR construction process and
// are not available to early stages of said process.
ID() ID
// Parent returns the function to which this instruction
// belongs.
Parent() *Function
// Block returns the basic block to which this instruction
// belongs.
Block() *BasicBlock
// setBlock sets the basic block to which this instruction belongs.
setBlock(*BasicBlock)
// Operands returns the operands of this instruction: the
// set of Values it references.
//
// Specifically, it appends their addresses to rands, a
// user-provided slice, and returns the resulting slice,
// permitting avoidance of memory allocation.
//
// The operands are appended in undefined order, but the order
// is consistent for a given Instruction; the addresses are
// always non-nil but may point to a nil Value. Clients may
// store through the pointers, e.g. to effect a value
// renaming.
//
// Value.Referrers is a subset of the inverse of this
// relation. (Referrers are not tracked for all types of
// Values.)
Operands(rands []*Value) []*Value
Referrers() *[]Instruction // nil for non-Values
// Source returns the AST node responsible for creating this
// instruction. A single AST node may be responsible for more than
// one instruction, and not all instructions have an associated
// AST node.
Source() ast.Node
// Pos returns Source().Pos() if Source is not nil, else it
// returns token.NoPos.
Pos() token.Pos
}
// A Node is a node in the IR value graph. Every concrete type that
// implements Node is also either a Value, an Instruction, or both.
//
// Node contains the methods common to Value and Instruction, plus the
// Operands and Referrers methods generalized to return nil for
// non-Instructions and non-Values, respectively.
//
// Node is provided to simplify IR graph algorithms. Clients should
// use the more specific and informative Value or Instruction
// interfaces where appropriate.
type Node interface {
setID(ID)
// Common methods:
ID() ID
String() string
Source() ast.Node
Pos() token.Pos
Parent() *Function
// Partial methods:
Operands(rands []*Value) []*Value // nil for non-Instructions
Referrers() *[]Instruction // nil for non-Values
}
type Synthetic int
const (
SyntheticLoadedFromExportData Synthetic = iota + 1
SyntheticPackageInitializer
SyntheticThunk
SyntheticWrapper
SyntheticBound
SyntheticGeneric
)
func (syn Synthetic) String() string {
switch syn {
case SyntheticLoadedFromExportData:
return "loaded from export data"
case SyntheticPackageInitializer:
return "package initializer"
case SyntheticThunk:
return "thunk"
case SyntheticWrapper:
return "wrapper"
case SyntheticBound:
return "bound"
case SyntheticGeneric:
return "generic"
default:
return fmt.Sprintf("Synthetic(%d)", syn)
}
}
// Function represents the parameters, results, and code of a function
// or method.
//
// If Blocks is nil, this indicates an external function for which no
// Go source code is available. In this case, FreeVars and Locals
// are nil too. Clients performing whole-program analysis must
// handle external functions specially.
//
// Blocks contains the function's control-flow graph (CFG).
// Blocks[0] is the function entry point; block order is not otherwise
// semantically significant, though it may affect the readability of
// the disassembly.
// To iterate over the blocks in dominance order, use DomPreorder().
//
// A nested function (Parent()!=nil) that refers to one or more
// lexically enclosing local variables ("free variables") has FreeVars.
// Such functions cannot be called directly but require a
// value created by MakeClosure which, via its Bindings, supplies
// values for these parameters.
//
// If the function is a method (Signature.Recv() != nil) then the first
// element of Params is the receiver parameter.
//
// A Go package may declare many functions called "init".
// For each one, Object().Name() returns "init" but Name() returns
// "init#1", etc, in declaration order.
//
// Pos() returns the declaring ast.FuncLit.Type.Func or the position
// of the ast.FuncDecl.Name, if the function was explicit in the
// source. Synthetic wrappers, for which Synthetic != "", may share
// the same position as the function they wrap.
// Syntax.Pos() always returns the position of the declaring "func" token.
//
// Type() returns the function's Signature.
type Function struct {
node
name string
object types.Object // a declared *types.Func or one of its wrappers
method *types.Selection // info about provenance of synthetic methods
Signature *types.Signature
generics instanceWrapperMap
Synthetic Synthetic
parent *Function // enclosing function if anon; nil if global
Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error)
Prog *Program // enclosing program
Params []*Parameter // function parameters; for methods, includes receiver
FreeVars []*FreeVar // free variables whose values must be supplied by closure
Locals []*Alloc // local variables of this function
Blocks []*BasicBlock // basic blocks of the function; nil => external
Exit *BasicBlock // The function's exit block
AnonFuncs []*Function // anonymous functions directly beneath this one
referrers []Instruction // referring instructions (iff Parent() != nil)
NoReturn NoReturn // Calling this function will always terminate control flow.
*functionBody
}
type instanceWrapperMap struct {
h typeutil.Hasher
entries map[uint32][]struct {
key *types.TypeList
val *Function
}
len int
}
func typeListIdentical(l1, l2 *types.TypeList) bool {
if l1.Len() != l2.Len() {
return false
}
for i := 0; i < l1.Len(); i++ {
t1 := l1.At(i)
t2 := l2.At(i)
if !types.Identical(t1, t2) {
return false
}
}
return true
}
func (m *instanceWrapperMap) At(key *types.TypeList) *Function {
if m.entries == nil {
m.entries = make(map[uint32][]struct {
key *types.TypeList
val *Function
})
m.h = typeutil.MakeHasher()
}
var hash uint32
for i := 0; i < key.Len(); i++ {
t := key.At(i)
hash += m.h.Hash(t)
}
for _, e := range m.entries[hash] {
if typeListIdentical(e.key, key) {
return e.val
}
}
return nil
}
func (m *instanceWrapperMap) Set(key *types.TypeList, val *Function) {
if m.entries == nil {
m.entries = make(map[uint32][]struct {
key *types.TypeList
val *Function
})
m.h = typeutil.MakeHasher()
}
var hash uint32
for i := 0; i < key.Len(); i++ {
t := key.At(i)
hash += m.h.Hash(t)
}
for i, e := range m.entries[hash] {
if typeListIdentical(e.key, key) {
m.entries[hash][i].val = val
return
}
}
m.entries[hash] = append(m.entries[hash], struct {
key *types.TypeList
val *Function
}{key, val})
m.len++
}
func (m *instanceWrapperMap) Len() int {
return m.len
}
type NoReturn uint8
const (
Returns NoReturn = iota
AlwaysExits
AlwaysUnwinds
NeverReturns
)
type constValue struct {
c Constant
idx int
}
type functionBody struct {
// The following fields are set transiently during building,
// then cleared.
currentBlock *BasicBlock // where to emit code
objects map[types.Object]Value // addresses of local variables
namedResults []*Alloc // tuple of named results
implicitResults []*Alloc // tuple of results
targets *targets // linked stack of branch targets
lblocks map[types.Object]*lblock // labelled blocks
consts map[constKey]constValue
aggregateConsts typeutil.Map[[]*AggregateConst]
wr *HTMLWriter
fakeExits BlockSet
blocksets [5]BlockSet
hasDefer bool
// a contiguous block of instructions that will be used by blocks,
// to avoid making multiple allocations.
scratchInstructions []Instruction
}
func (fn *Function) results() []*Alloc {
if len(fn.namedResults) > 0 {
return fn.namedResults
}
return fn.implicitResults
}
// BasicBlock represents an IR basic block.
//
// The final element of Instrs is always an explicit transfer of
// control (If, Jump, Return, Panic, or Unreachable).
//
// A block may contain no Instructions only if it is unreachable,
// i.e., Preds is nil. Empty blocks are typically pruned.
//
// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
// graph independent of the IR Value graph: the control-flow graph or
// CFG. It is illegal for multiple edges to exist between the same
// pair of blocks.
//
// Each BasicBlock is also a node in the dominator tree of the CFG.
// The tree may be navigated using Idom()/Dominees() and queried using
// Dominates().
//
// The order of Preds and Succs is significant (to Phi and If
// instructions, respectively).
type BasicBlock struct {
Index int // index of this block within Parent().Blocks
Comment string // optional label; no semantic significance
parent *Function // parent function
Instrs []Instruction // instructions in order
Preds, Succs []*BasicBlock // predecessors and successors
succs2 [2]*BasicBlock // initial space for Succs
dom domInfo // dominator tree info
pdom domInfo // post-dominator tree info
post int
gaps int // number of nil Instrs (transient)
rundefers int // number of rundefers (transient)
}
// Pure values ----------------------------------------
// A FreeVar represents a free variable of the function to which it
// belongs.
//
// FreeVars are used to implement anonymous functions, whose free
// variables are lexically captured in a closure formed by
// MakeClosure. The value of such a free var is an Alloc or another
// FreeVar and is considered a potentially escaping heap address, with
// pointer type.
//
// FreeVars are also used to implement bound method closures. Such a
// free var represents the receiver value and may be of any type that
// has concrete methods.
//
// Pos() returns the position of the value that was captured, which
// belongs to an enclosing function.
type FreeVar struct {
node
name string
typ types.Type
parent *Function
referrers []Instruction
// Transiently needed during building.
outer Value // the Value captured from the enclosing context.
}
// A Parameter represents an input parameter of a function.
type Parameter struct {
register
name string
object types.Object // a *types.Var; nil for non-source locals
}
// A Const represents the value of a constant expression.
//
// The underlying type of a constant may be any boolean, numeric, or
// string type. In addition, a Const may represent the nil value of
// any reference type---interface, map, channel, pointer, slice, or
// function---but not "untyped nil".
//
// All source-level constant expressions are represented by a Const
// of the same type and value.
//
// Value holds the exact value of the constant, independent of its
// Type(), using the same representation as package go/constant uses for
// constants, or nil for a typed nil value.
//
// Pos() returns token.NoPos.
//
// Example printed form:
//
// Const <int> {42}
// Const <untyped string> {"test"}
// Const <MyComplex> {(3 + 4i)}
type Const struct {
register
Value constant.Value
}
type AggregateConst struct {
register
Values []Value
}
type CompositeValue struct {
register
// Bitmap records which elements were explicitly provided. For example, [4]byte{2: x} would have a bitmap of 0010.
Bitmap big.Int
// The number of bits set in Bitmap
NumSet int
// Dense list of values in the composite literal. Omitted elements are filled in with zero values.
Values []Value
}
// TODO add the element's zero constant to ArrayConst
type ArrayConst struct {
register
}
type GenericConst struct {
register
}
type Constant interface {
Instruction
Value
aConstant()
RelString(*types.Package) string
equal(Constant) bool
setType(types.Type)
}
func (*Const) aConstant() {}
func (*AggregateConst) aConstant() {}
func (*ArrayConst) aConstant() {}
func (*GenericConst) aConstant() {}
// A Global is a named Value holding the address of a package-level
// variable.
//
// Pos() returns the position of the ast.ValueSpec.Names[*]
// identifier.
type Global struct {
node
name string
object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
typ types.Type
Pkg *Package
}
// A Builtin represents a specific use of a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
// Builtins can only appear in CallCommon.Func.
//
// Name() indicates the function: one of the built-in functions from the
// Go spec (excluding "make" and "new") or one of these ir-defined
// intrinsics:
//
// // wrapnilchk returns ptr if non-nil, panics otherwise.
// // (For use in indirection wrappers.)
// func ir:wrapnilchk(ptr *T, recvType, methodName string) *T
//
// // noreturnWasPanic returns true if the previously called
// // function panicked, false if it exited the process.
// func ir:noreturnWasPanic() bool
//
// Object() returns a *types.Builtin for built-ins defined by the spec,
// nil for others.
//
// Type() returns a *types.Signature representing the effective
// signature of the built-in for this call.
type Builtin struct {
node
name string
sig *types.Signature
}
// Value-defining instructions ----------------------------------------
// The Alloc instruction reserves space for a variable of the given type,
// zero-initializes it, and yields its address.
//
// Alloc values are always addresses, and have pointer types, so the
// type of the allocated variable is actually
// Type().Underlying().(*types.Pointer).Elem().
//
// If Heap is false, Alloc allocates space in the function's
// activation record (frame); we refer to an Alloc(Heap=false) as a
// "stack" alloc. Each stack Alloc returns the same address each time
// it is executed within the same activation; the space is
// re-initialized to zero.
//
// If Heap is true, Alloc allocates space in the heap; we
// refer to an Alloc(Heap=true) as a "heap" alloc. Each heap Alloc
// returns a different address each time it is executed.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
// or the ast.CallExpr.Rparen for a call to new() or for a call that
// allocates a varargs slice.
//
// Example printed form:
//
// t1 = StackAlloc <*int>
// t2 = HeapAlloc <*int> (new)
type Alloc struct {
register
Heap bool
index int // dense numbering; for lifting
}
var _ Instruction = (*Sigma)(nil)
var _ Value = (*Sigma)(nil)
// The Sigma instruction represents an SSI σ-node, which splits values
// at branches in the control flow.
//
// Conceptually, σ-nodes exist at the end of blocks that branch and
// constitute parallel assignments to one value per destination block.
// However, such a representation would be awkward to work with, so
// instead we place σ-nodes at the beginning of branch targets. The
// From field denotes to which incoming edge the node applies.
//
// Within a block, all σ-nodes must appear before all non-σ nodes.
//
// Example printed form:
//
// t2 = Sigma <int> [#0] t1 (x)
type Sigma struct {
register
From *BasicBlock
X Value
live bool // used during lifting
}
type CopyInfo uint64
const (
CopyInfoUnspecified CopyInfo = 0
CopyInfoNotNil CopyInfo = 1 << iota
CopyInfoNotZeroLength
CopyInfoNotNegative
CopyInfoSingleConcreteType
CopyInfoClosed
)
type Copy struct {
register
X Value
Why Instruction
Info CopyInfo
}
// The Phi instruction represents an SSA φ-node, which combines values
// that differ across incoming control-flow edges and yields a new
// value. Within a block, all φ-nodes must appear before all non-φ, non-σ
// nodes.
//
// Pos() returns the position of the && or || for short-circuit
// control-flow joins, or that of the *Alloc for φ-nodes inserted
// during SSA renaming.
//
// Example printed form:
//
// t3 = Phi <int> 2:t1 4:t2 (x)
type Phi struct {
register
Edges []Value // Edges[i] is value for Block().Preds[i]
live bool // used during lifting
}
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result if there is exactly
// one. Otherwise it returns a tuple, the components of which are
// accessed via Extract.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
//
// Example printed form:
//
// t3 = Call <()> println t1 t2
// t4 = Call <()> foo$1
// t6 = Invoke <string> t5.String
type Call struct {
register
Call CallCommon
}
// The BinOp instruction yields the result of binary operation X Op Y.
//
// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
//
// Example printed form:
//
// t3 = BinOp <int> {+} t2 t1
type BinOp struct {
register
// One of:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
Op token.Token
X, Y Value
}
// The UnOp instruction yields the result of Op X.
// XOR is bitwise complement.
// SUB is negation.
// NOT is logical negation.
//
// Example printed form:
//
// t2 = UnOp <int> {^} t1
type UnOp struct {
register
Op token.Token // One of: NOT SUB XOR ! - ^
X Value
}
// The Load instruction loads a value from a memory address.
//
// For implicit memory loads, Pos() returns the position of the
// most closely associated source-level construct; the details are not
// specified.
//
// Example printed form:
//
// t2 = Load <int> t1
type Load struct {
register
X Value
}
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
//
// This operation cannot fail dynamically.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t2 = ChangeType <*T> t1
type ChangeType struct {
register
X Value
}
// The Convert instruction yields the conversion of value X to type
// Type(). One or both of those types is basic (but possibly named).
//
// A conversion may change the value and representation of its operand.
// Conversions are permitted:
// - between real numeric types.
// - between complex numeric types.
// - between string and []byte or []rune.
// - between pointers and unsafe.Pointer.
// - between unsafe.Pointer and uintptr.
// - from (Unicode) integer to (UTF-8) string.
//
// A conversion may imply a type name change also.
//
// This operation cannot fail dynamically.
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during IR construction.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t2 = Convert <[]byte> t1
type Convert struct {
register
X Value
}
// ChangeInterface constructs a value of one interface type from a
// value of another interface type known to be assignable to it.
// This operation cannot fail.
//
// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
// instruction arose from an explicit e.(T) operation; or token.NoPos
// otherwise.
//
// Example printed form:
//
// t2 = ChangeInterface <I1> t1
type ChangeInterface struct {
register
X Value
}
// The SliceToArrayPointer instruction yields the conversion of slice X to
// array pointer.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t2 = SliceToArrayPointer <*[4]byte> t1
type SliceToArrayPointer struct {
register
X Value
}
// The SliceToArray instruction yields the conversion of slice X to
// array.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t2 = SliceToArray <[4]byte> t1
type SliceToArray struct {
register
X Value
}
// MakeInterface constructs an instance of an interface type from a
// value of a concrete type.
//
// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
// of X, and Program.MethodValue(m) to find the implementation of a method.
//
// To construct the zero value of an interface type T, use:
//
// NewConst(constant.MakeNil(), T, pos)
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t2 = MakeInterface <interface{}> t1
type MakeInterface struct {
register
X Value
}
// The MakeClosure instruction yields a closure value whose code is
// Fn and whose free variables' values are supplied by Bindings.
//
// Type() returns a (possibly named) *types.Signature.
//
// Pos() returns the ast.FuncLit.Type.Func for a function literal
// closure or the ast.SelectorExpr.Sel for a bound method closure.
//
// Example printed form:
//
// t1 = MakeClosure <func()> foo$1 t1 t2
// t5 = MakeClosure <func(int)> (T).foo$bound t4
type MakeClosure struct {
register
Fn Value // always a *Function
Bindings []Value // values for each free variable in Fn.FreeVars
}
// The MakeMap instruction creates a new hash-table-based map object
// and yields a value of kind map.
//
// Type() returns a (possibly named) *types.Map.
//
// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
// the ast.CompositeLit.Lbrack if created by a literal.
//
// Example printed form:
//
// t1 = MakeMap <map[string]int>
// t2 = MakeMap <StringIntMap> t1
type MakeMap struct {
register
Reserve Value // initial space reservation; nil => default
}
// The MakeChan instruction creates a new channel object and yields a
// value of kind chan.
//
// Type() returns a (possibly named) *types.Chan.
//
// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
// created it.
//
// Example printed form:
//
// t3 = MakeChan <chan int> t1
// t4 = MakeChan <chan IntChan> t2
type MakeChan struct {
register
Size Value // int; size of buffer; zero => synchronous.
}
// The MakeSlice instruction yields a slice of length Len backed by a
// newly allocated array of length Cap.
//
// Both Len and Cap must be non-nil Values of integer type.
//
// (Alloc(types.Array) followed by Slice will not suffice because
// Alloc can only create arrays of constant length.)
//
// Type() returns a (possibly named) *types.Slice.
//
// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
// created it.
//
// Example printed form:
//
// t3 = MakeSlice <[]string> t1 t2
// t4 = MakeSlice <StringSlice> t1 t2
type MakeSlice struct {
register
Len Value
Cap Value
}
// The Slice instruction yields a slice of an existing string, slice
// or *array X between optional integer bounds Low and High.
//
// Dynamically, this instruction panics if X evaluates to a nil *array
// pointer.
//
// Type() returns string if the type of X was string, otherwise a
// *types.Slice with the same element type as X.
//
// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
// operation, the ast.CompositeLit.Lbrace if created by a literal, or
// NoPos if not explicit in the source (e.g. a variadic argument slice).
//
// Example printed form:
//
// t4 = Slice <[]int> t3 t2 t1 <nil>
type Slice struct {
register
X Value // slice, string, or *array
Low, High, Max Value // each may be nil
}
// The FieldAddr instruction yields the address of Field of *struct X.
//
// The field is identified by its index within the field list of the
// struct type of X.
//
// Dynamically, this instruction panics if X evaluates to a nil
// pointer.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
//
// t2 = FieldAddr <*int> [0] (X) t1
type FieldAddr struct {
register
X Value // *struct
Field int // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field)
}
// The Field instruction yields the Field of struct X.
//
// The field is identified by its index within the field list of the
// struct type of X; by using numeric indices we avoid ambiguity of
// package-local identifiers and permit compact representations.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
//
// t2 = FieldAddr <int> [0] (X) t1
type Field struct {
register
X Value // struct
Field int // index into X.Type().(*types.Struct).Fields
}
// The IndexAddr instruction yields the address of the element at
// index Index of collection X. Index is an integer expression.
//
// The elements of maps and strings are not addressable; use StringLookup, MapLookup or
// MapUpdate instead.
//
// Dynamically, this instruction panics if X evaluates to a nil *array
// pointer.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
//
// t3 = IndexAddr <*int> t2 t1
type IndexAddr struct {
register
X Value // slice or *array,
Index Value // numeric index
}
// The Index instruction yields element Index of array X.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
//
// t3 = Index <int> t2 t1
type Index struct {
register
X Value // array
Index Value // integer index
}
// The MapLookup instruction yields element Index of collection X, a map.
//
// If CommaOk, the result is a 2-tuple of the value above and a
// boolean indicating the result of a map membership test for the key.
// The components of the tuple are accessed using Extract.
//
// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
//
// Example printed form:
//
// t4 = MapLookup <string> t3 t1
// t6 = MapLookup <(string, bool)> t3 t2
type MapLookup struct {
register
X Value // map
Index Value // key-typed index
CommaOk bool // return a value,ok pair
}
// The StringLookup instruction yields element Index of collection X, a string.
// Index is an integer expression.
//
// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
//
// Example printed form:
//
// t3 = StringLookup <uint8> t2 t1
type StringLookup struct {
register
X Value // string
Index Value // numeric index
}
// SelectState is a helper for Select.
// It represents one goal state and its corresponding communication.
type SelectState struct {
Dir types.ChanDir // direction of case (SendOnly or RecvOnly)
Chan Value // channel to use (for send or receive)
Send Value // value to send (for send)
Pos token.Pos // position of token.ARROW
DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
}
// The Select instruction tests whether (or blocks until) one
// of the specified sent or received states is entered.
//
// Let n be the number of States for which Dir==RECV and Tᵢ (0 ≤ i < n)
// be the element type of each such state's Chan.
// Select returns an n+2-tuple
//
// (index int, recvOk bool, r₀ T₀, ... rₙ-1 Tₙ-1)
//
// The tuple's components, described below, must be accessed via the
// Extract instruction.
//
// If Blocking, select waits until exactly one state holds, i.e. a
// channel becomes ready for the designated operation of sending or
// receiving; select chooses one among the ready states
// pseudorandomly, performs the send or receive operation, and sets
// 'index' to the index of the chosen channel.
//
// If !Blocking, select doesn't block if no states hold; instead it
// returns immediately with index equal to -1.
//
// If the chosen channel was used for a receive, the rᵢ component is
// set to the received value, where i is the index of that state among
// all n receive states; otherwise rᵢ has the zero value of type Tᵢ.
// Note that the receive index i is not the same as the state
// index index.
//
// The second component of the triple, recvOk, is a boolean whose value
// is true iff the selected operation was a receive and the receive
// successfully yielded a value.
//
// Pos() returns the ast.SelectStmt.Select.
//
// Example printed form:
//
// t6 = SelectNonBlocking <(index int, ok bool, int)> [<-t4, t5<-t1]
// t11 = SelectBlocking <(index int, ok bool)> []
type Select struct {
register
States []*SelectState
Blocking bool
}
// The Range instruction yields an iterator over the domain and range
// of X, which must be a string or map.
//
// Elements are accessed via Next.
//
// Type() returns an opaque and degenerate "rangeIter" type.
//
// Pos() returns the ast.RangeStmt.For.
//
// Example printed form:
//
// t2 = Range <iter> t1
type Range struct {
register
X Value // string or map
}
// The Next instruction reads and advances the (map or string)
// iterator Iter and returns a 3-tuple value (ok, k, v). If the
// iterator is not exhausted, ok is true and k and v are the next
// elements of the domain and range, respectively. Otherwise ok is
// false and k and v are undefined.
//
// Components of the tuple are accessed using Extract.
//
// The IsString field distinguishes iterators over strings from those
// over maps, as the Type() alone is insufficient: consider
// map[int]rune.
//
// Type() returns a *types.Tuple for the triple (ok, k, v).
// The types of k and/or v may be types.Invalid.
//
// Example printed form:
//
// t5 = Next <(ok bool, k int, v rune)> t2
// t5 = Next <(ok bool, k invalid type, v invalid type)> t2
type Next struct {
register
Iter Value
IsString bool // true => string iterator; false => map iterator.
}
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation will
// fail iff the operand is nil. (Contrast with ChangeInterface, which
// performs no nil-check.)
//
// Type() reflects the actual type of the result, possibly a
// 2-types.Tuple; AssertedType is the asserted type.
//
// Pos() returns the ast.CallExpr.Lparen if the instruction arose from
// an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
// instruction arose from an explicit e.(T) operation; or the
// ast.CaseClause.Case if the instruction arose from a case of a
// type-switch statement.
//
// Example printed form:
//
// t2 = TypeAssert <int> t1
// t4 = TypeAssert <(value fmt.Stringer, ok bool)> t1
type TypeAssert struct {
register
X Value
AssertedType types.Type
CommaOk bool
}
// The Extract instruction yields component Index of Tuple.
//
// This is used to access the results of instructions with multiple
// return values, such as Call, TypeAssert, Next, Recv,
// MapLookup and others.
//
// Example printed form:
//
// t7 = Extract <bool> [1] (ok) t4
type Extract struct {
register
Tuple Value
Index int
}
// Instructions executed for effect. They do not yield a value. --------------------
// The Jump instruction transfers control to the sole successor of its
// owning block.
//
// A Jump must be the last instruction of its containing BasicBlock.
//
// Pos() returns NoPos.
//
// Example printed form:
//
// Jump → b1
type Jump struct {
anInstruction
}
// The Unreachable pseudo-instruction signals that execution cannot
// continue after the preceding function call because it terminates
// the process.
//
// The instruction acts as a control instruction, jumping to the exit
// block. However, this jump will never execute.
//
// An Unreachable instruction must be the last instruction of its
// containing BasicBlock.
//
// Example printed form:
//
// Unreachable → b1
type Unreachable struct {
anInstruction
}
// The If instruction transfers control to one of the two successors
// of its owning block, depending on the boolean Cond: the first if
// true, the second if false.
//
// An If instruction must be the last instruction of its containing
// BasicBlock.
//
// Pos() returns the *ast.IfStmt, if explicit in the source.
//
// Example printed form:
//
// If t2 → b1 b2
type If struct {
anInstruction
Cond Value
}
type ConstantSwitch struct {
anInstruction
Tag Value
// Constant branch conditions. A nil Value denotes the (implicit
// or explicit) default branch.
Conds []Value
}
type TypeSwitch struct {
register
Tag Value
Conds []types.Type
}
// The Return instruction returns values and control back to the calling
// function.
//
// len(Results) is always equal to the number of results in the
// function's signature.
//
// If len(Results) > 1, Return returns a tuple value with the specified
// components which the caller must access using Extract instructions.
//
// There is no instruction to return a ready-made tuple like those
// returned by a "value,ok"-mode TypeAssert, MapLookup or Recv or
// a tail-call to a function with multiple result parameters.
//
// Return must be the last instruction of its containing BasicBlock.
// Such a block has no successors.
//
// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
//
// Example printed form:
//
// Return
// Return t1 t2
type Return struct {
anInstruction
Results []Value
}
// The RunDefers instruction pops and invokes the entire stack of
// procedure calls pushed by Defer instructions in this function.
//
// It is legal to encounter multiple 'rundefers' instructions in a
// single control-flow path through a function; this is useful in
// the combined init() function, for example.
//
// Pos() returns NoPos.
//
// Example printed form:
//
// RunDefers
type RunDefers struct {
anInstruction
}
// The Panic instruction initiates a panic with value X.
//
// A Panic instruction must be the last instruction of its containing
// BasicBlock, which must have one successor, the exit block.
//
// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
// they are treated as calls to a built-in function.
//
// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
// in the source.
//
// Example printed form:
//
// Panic t1
type Panic struct {
anInstruction
X Value // an interface{}
}
// The Go instruction creates a new goroutine and calls the specified
// function within it.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.GoStmt.Go.
//
// Example printed form:
//
// Go println t1
// Go t3
// GoInvoke t4.Bar t2
type Go struct {
anInstruction
Call CallCommon
}
// The Defer instruction pushes the specified call onto a stack of
// functions to be called by a RunDefers instruction or by a panic.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.DeferStmt.Defer.
//
// Example printed form:
//
// Defer println t1
// Defer t3
// DeferInvoke t4.Bar t2
type Defer struct {
anInstruction
Call CallCommon
}
// The Send instruction sends X on channel Chan.
//
// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
//
// Example printed form:
//
// Send t2 t1
type Send struct {
anInstruction
Chan, X Value
}
// The Recv instruction receives from channel Chan.
//
// If CommaOk, the result is a 2-tuple of the value above
// and a boolean indicating the success of the receive. The
// components of the tuple are accessed using Extract.
//
// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
// For receive operations implicit in ranging over a channel,
// Pos() returns the ast.RangeStmt.For.
//
// Example printed form:
//
// t2 = Recv <int> t1
// t3 = Recv <(int, bool)> t1
type Recv struct {
register
Chan Value
CommaOk bool
}
// The Store instruction stores Val at address Addr.
// Stores can be of arbitrary types.
//
// Pos() returns the position of the source-level construct most closely
// associated with the memory store operation.
// Since implicit memory stores are numerous and varied and depend upon
// implementation choices, the details are not specified.
//
// Example printed form:
//
// Store {int} t2 t1
type Store struct {
anInstruction
Addr Value
Val Value
}
// The BlankStore instruction is emitted for assignments to the blank
// identifier.
//
// BlankStore is a pseudo-instruction: it has no dynamic effect.
//
// Pos() returns NoPos.
//
// Example printed form:
//
// BlankStore t1
type BlankStore struct {
anInstruction
Val Value
}
// The MapUpdate instruction updates the association of Map[Key] to
// Value.
//
// Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
// if explicit in the source.
//
// Example printed form:
//
// MapUpdate t3 t1 t2
type MapUpdate struct {
anInstruction
Map Value
Key Value
Value Value
}
// A DebugRef instruction maps a source-level expression Expr to the
// IR value X that represents the value (!IsAddr) or address (IsAddr)
// of that expression.
//
// DebugRef is a pseudo-instruction: it has no dynamic effect.
//
// Pos() returns Expr.Pos(), the start position of the source-level
// expression. This is not the same as the "designated" token as
// documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
// position of the ("designated") Lparen token.
//
// DebugRefs are generated only for functions built with debugging
// enabled; see Package.SetDebugMode() and the GlobalDebug builder
// mode flag.
//
// DebugRefs are not emitted for ast.Idents referring to constants or
// predeclared identifiers, since they are trivial and numerous.
// Nor are they emitted for ast.ParenExprs.
//
// (By representing these as instructions, rather than out-of-band,
// consistency is maintained during transformation passes by the
// ordinary SSA renaming machinery.)
//
// Example printed form:
//
// ; *ast.CallExpr @ 102:9 is t5
// ; var x float64 @ 109:72 is x
// ; address of *ast.CompositeLit @ 216:10 is t0
type DebugRef struct {
anInstruction
Expr ast.Expr // the referring expression (never *ast.ParenExpr)
object types.Object // the identity of the source var/func
IsAddr bool // Expr is addressable and X is the address it denotes
X Value // the value or address of Expr
}
// Embeddable mix-ins and helpers for common parts of other structs. -----------
// register is a mix-in embedded by all IR values that are also
// instructions, i.e. virtual registers, and provides a uniform
// implementation of most of the Value interface: Value.Name() is a
// numbered register (e.g. "t0"); the other methods are field accessors.
//
// Temporary names are automatically assigned to each register on
// completion of building a function in IR form.
type register struct {
anInstruction
typ types.Type // type of virtual register
referrers []Instruction
}
type node struct {
source ast.Node
id ID
}
func (n *node) setID(id ID) { n.id = id }
func (n node) ID() ID { return n.id }
func (n *node) setSource(source ast.Node) { n.source = source }
func (n *node) Source() ast.Node { return n.source }
func (n *node) Pos() token.Pos {
if n.source != nil {
return n.source.Pos()
}
return token.NoPos
}
// anInstruction is a mix-in embedded by all Instructions.
// It provides the implementations of the Block and setBlock methods.
type anInstruction struct {
node
block *BasicBlock // the basic block of this instruction
comment string
}
func (instr anInstruction) Comment() string {
return instr.comment
}
// CallCommon is contained by Go, Defer and Call to hold the
// common parts of a function or method call.
//
// Each CallCommon exists in one of two modes, function call and
// interface method invocation, or "call" and "invoke" for short.
//
// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
// represents an ordinary function call of the value in Value,
// which may be a *Builtin, a *Function or any other value of kind
// 'func'.
//
// Value may be one of:
//
// (a) a *Function, indicating a statically dispatched call
// to a package-level function, an anonymous function, or
// a method of a named type.
// (b) a *MakeClosure, indicating an immediately applied
// function literal with free variables.
// (c) a *Builtin, indicating a statically dispatched call
// to a built-in function.
// (d) any other value, indicating a dynamically dispatched
// function call.
//
// StaticCallee returns the identity of the callee in cases
// (a) and (b), nil otherwise.
//
// Args contains the arguments to the call. If Value is a method,
// Args[0] contains the receiver parameter.
//
// Example printed form:
//
// t3 = Call <()> println t1 t2
// Go t3
// Defer t3
//
// 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
// represents a dynamically dispatched call to an interface method.
// In this mode, Value is the interface value and Method is the
// interface's abstract method. Note: an abstract method may be
// shared by multiple interfaces due to embedding; Value.Type()
// provides the specific interface used for this call.
//
// Value is implicitly supplied to the concrete method implementation
// as the receiver parameter; in other words, Args[0] holds not the
// receiver but the first true argument.
//
// Example printed form:
//
// t6 = Invoke <string> t5.String
// GoInvoke t4.Bar t2
// DeferInvoke t4.Bar t2
//
// For all calls to variadic functions (Signature().Variadic()),
// the last element of Args is a slice.
type CallCommon struct {
Value Value // receiver (invoke mode) or func value (call mode)
Method *types.Func // abstract method (invoke mode)
Args []Value // actual parameters (in static method call, includes receiver)
TypeArgs []types.Type
Results Value
}
// IsInvoke returns true if this call has "invoke" (not "call") mode.
func (c *CallCommon) IsInvoke() bool {
return c.Method != nil
}
// Signature returns the signature of the called function.
//
// For an "invoke"-mode call, the signature of the interface method is
// returned.
//
// In either "call" or "invoke" mode, if the callee is a method, its
// receiver is represented by sig.Recv, not sig.Params().At(0).
func (c *CallCommon) Signature() *types.Signature {
if c.Method != nil {
return c.Method.Type().(*types.Signature)
}
return typeutil.CoreType(c.Value.Type()).(*types.Signature)
}
// StaticCallee returns the callee if this is a trivially static
// "call"-mode call to a function.
func (c *CallCommon) StaticCallee() *Function {
switch fn := c.Value.(type) {
case *Function:
return fn
case *MakeClosure:
return fn.Fn.(*Function)
}
return nil
}
// Description returns a description of the mode of this call suitable
// for a user interface, e.g., "static method call".
func (c *CallCommon) Description() string {
switch fn := c.Value.(type) {
case *Builtin:
return "built-in function call"
case *MakeClosure:
return "static function closure call"
case *Function:
if fn.Signature.Recv() != nil {
return "static method call"
}
return "static function call"
}
if c.IsInvoke() {
return "dynamic method call" // ("invoke" mode)
}
return "dynamic function call"
}
// The CallInstruction interface, implemented by *Go, *Defer and *Call,
// exposes the common parts of function-calling instructions,
// yet provides a way back to the Value defined by *Call alone.
type CallInstruction interface {
Instruction
Common() *CallCommon // returns the common parts of the call
Value() *Call
}
func (s *Call) Common() *CallCommon { return &s.Call }
func (s *Defer) Common() *CallCommon { return &s.Call }
func (s *Go) Common() *CallCommon { return &s.Call }
func (s *Call) Value() *Call { return s }
func (s *Defer) Value() *Call { return nil }
func (s *Go) Value() *Call { return nil }
func (v *Builtin) Type() types.Type { return v.sig }
func (v *Builtin) Name() string { return v.name }
func (*Builtin) Referrers() *[]Instruction { return nil }
func (v *Builtin) Pos() token.Pos { return token.NoPos }
func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) }
func (v *Builtin) Parent() *Function { return nil }
func (v *FreeVar) Type() types.Type { return v.typ }
func (v *FreeVar) Name() string { return v.name }
func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
func (v *FreeVar) Parent() *Function { return v.parent }
func (v *Global) Type() types.Type { return v.typ }
func (v *Global) Name() string { return v.name }
func (v *Global) Parent() *Function { return nil }
func (v *Global) Referrers() *[]Instruction { return nil }
func (v *Global) Token() token.Token { return token.VAR }
func (v *Global) Object() types.Object { return v.object }
func (v *Global) String() string { return v.RelString(nil) }
func (v *Global) Package() *Package { return v.Pkg }
func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
func (v *Function) Name() string { return v.name }
func (v *Function) Type() types.Type { return v.Signature }
func (v *Function) Token() token.Token { return token.FUNC }
func (v *Function) Object() types.Object { return v.object }
func (v *Function) String() string { return v.RelString(nil) }
func (v *Function) Package() *Package { return v.Pkg }
func (v *Function) Parent() *Function { return v.parent }
func (v *Function) Referrers() *[]Instruction {
if v.parent != nil {
return &v.referrers
}
return nil
}
func (v *Parameter) Object() types.Object { return v.object }
func (v *Alloc) Type() types.Type { return v.typ }
func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
func (v *register) Type() types.Type { return v.typ }
func (v *register) setType(typ types.Type) { v.typ = typ }
func (v *register) Name() string { return fmt.Sprintf("t%d", v.id) }
func (v *register) Referrers() *[]Instruction { return &v.referrers }
func (v *anInstruction) Parent() *Function { return v.block.parent }
func (v *anInstruction) Block() *BasicBlock { return v.block }
func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
func (v *anInstruction) Referrers() *[]Instruction { return nil }
func (t *Type) Name() string { return t.object.Name() }
func (t *Type) Pos() token.Pos { return t.object.Pos() }
func (t *Type) Type() types.Type { return t.object.Type() }
func (t *Type) Token() token.Token { return token.TYPE }
func (t *Type) Object() types.Object { return t.object }
func (t *Type) String() string { return t.RelString(nil) }
func (t *Type) Package() *Package { return t.pkg }
func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
func (c *NamedConst) Name() string { return c.object.Name() }
func (c *NamedConst) Pos() token.Pos { return c.object.Pos() }
func (c *NamedConst) String() string { return c.RelString(nil) }
func (c *NamedConst) Type() types.Type { return c.object.Type() }
func (c *NamedConst) Token() token.Token { return token.CONST }
func (c *NamedConst) Object() types.Object { return c.object }
func (c *NamedConst) Package() *Package { return c.pkg }
func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
// Func returns the package-level function of the specified name,
// or nil if not found.
func (p *Package) Func(name string) (f *Function) {
f, _ = p.Members[name].(*Function)
return
}
// Var returns the package-level variable of the specified name,
// or nil if not found.
func (p *Package) Var(name string) (g *Global) {
g, _ = p.Members[name].(*Global)
return
}
// Const returns the package-level constant of the specified name,
// or nil if not found.
func (p *Package) Const(name string) (c *NamedConst) {
c, _ = p.Members[name].(*NamedConst)
return
}
// Type returns the package-level type of the specified name,
// or nil if not found.
func (p *Package) Type(name string) (t *Type) {
t, _ = p.Members[name].(*Type)
return
}
func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() }
// Operands.
func (v *Alloc) Operands(rands []*Value) []*Value {
return rands
}
func (v *BinOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Y)
}
func (c *CallCommon) Operands(rands []*Value) []*Value {
rands = append(rands, &c.Value)
for i := range c.Args {
rands = append(rands, &c.Args[i])
}
return rands
}
func (s *Go) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Call) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Defer) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (v *ChangeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *ChangeType) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Convert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *SliceToArray) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *DebugRef) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (s *Copy) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (v *Extract) Operands(rands []*Value) []*Value {
return append(rands, &v.Tuple)
}
func (v *Field) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *FieldAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *If) Operands(rands []*Value) []*Value {
return append(rands, &s.Cond)
}
func (s *ConstantSwitch) Operands(rands []*Value) []*Value {
rands = append(rands, &s.Tag)
for i := range s.Conds {
rands = append(rands, &s.Conds[i])
}
return rands
}
func (s *TypeSwitch) Operands(rands []*Value) []*Value {
rands = append(rands, &s.Tag)
return rands
}
func (v *Index) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *IndexAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (*Jump) Operands(rands []*Value) []*Value {
return rands
}
func (*Unreachable) Operands(rands []*Value) []*Value {
return rands
}
func (v *MapLookup) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *StringLookup) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *MakeChan) Operands(rands []*Value) []*Value {
return append(rands, &v.Size)
}
func (v *MakeClosure) Operands(rands []*Value) []*Value {
rands = append(rands, &v.Fn)
for i := range v.Bindings {
rands = append(rands, &v.Bindings[i])
}
return rands
}
func (v *MakeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *MakeMap) Operands(rands []*Value) []*Value {
return append(rands, &v.Reserve)
}
func (v *MakeSlice) Operands(rands []*Value) []*Value {
return append(rands, &v.Len, &v.Cap)
}
func (v *MapUpdate) Operands(rands []*Value) []*Value {
return append(rands, &v.Map, &v.Key, &v.Value)
}
func (v *Next) Operands(rands []*Value) []*Value {
return append(rands, &v.Iter)
}
func (s *Panic) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (v *Sigma) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Phi) Operands(rands []*Value) []*Value {
for i := range v.Edges {
rands = append(rands, &v.Edges[i])
}
return rands
}
func (v *Range) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *Return) Operands(rands []*Value) []*Value {
for i := range s.Results {
rands = append(rands, &s.Results[i])
}
return rands
}
func (*RunDefers) Operands(rands []*Value) []*Value {
return rands
}
func (v *Select) Operands(rands []*Value) []*Value {
for i := range v.States {
rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
}
return rands
}
func (s *Send) Operands(rands []*Value) []*Value {
return append(rands, &s.Chan, &s.X)
}
func (recv *Recv) Operands(rands []*Value) []*Value {
return append(rands, &recv.Chan)
}
func (v *Slice) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Low, &v.High, &v.Max)
}
func (s *Store) Operands(rands []*Value) []*Value {
return append(rands, &s.Addr, &s.Val)
}
func (s *BlankStore) Operands(rands []*Value) []*Value {
return append(rands, &s.Val)
}
func (v *TypeAssert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *UnOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Load) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *AggregateConst) Operands(rands []*Value) []*Value {
for i := range v.Values {
rands = append(rands, &v.Values[i])
}
return rands
}
func (v *CompositeValue) Operands(rands []*Value) []*Value {
for i := range v.Values {
rands = append(rands, &v.Values[i])
}
return rands
}
// Non-Instruction Values:
func (v *Builtin) Operands(rands []*Value) []*Value { return rands }
func (v *FreeVar) Operands(rands []*Value) []*Value { return rands }
func (v *Const) Operands(rands []*Value) []*Value { return rands }
func (v *ArrayConst) Operands(rands []*Value) []*Value { return rands }
func (v *GenericConst) Operands(rands []*Value) []*Value { return rands }
func (v *Function) Operands(rands []*Value) []*Value { return rands }
func (v *Global) Operands(rands []*Value) []*Value { return rands }
func (v *Parameter) Operands(rands []*Value) []*Value { return rands }
|