1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
package sharedcheck
import (
"fmt"
"go/ast"
"go/token"
"go/types"
"honnef.co/go/tools/analysis/code"
"honnef.co/go/tools/analysis/edit"
"honnef.co/go/tools/analysis/facts/generated"
"honnef.co/go/tools/analysis/facts/tokenfile"
"honnef.co/go/tools/analysis/report"
"honnef.co/go/tools/go/ast/astutil"
"honnef.co/go/tools/go/ir"
"honnef.co/go/tools/go/ir/irutil"
"honnef.co/go/tools/go/types/typeutil"
"honnef.co/go/tools/internal/passes/buildir"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/inspect"
)
func CheckRangeStringRunes(pass *analysis.Pass) (interface{}, error) {
for _, fn := range pass.ResultOf[buildir.Analyzer].(*buildir.IR).SrcFuncs {
cb := func(node ast.Node) bool {
rng, ok := node.(*ast.RangeStmt)
if !ok || !astutil.IsBlank(rng.Key) {
return true
}
v, _ := fn.ValueForExpr(rng.X)
// Check that we're converting from string to []rune
val, _ := v.(*ir.Convert)
if val == nil {
return true
}
Tsrc, ok := typeutil.CoreType(val.X.Type()).(*types.Basic)
if !ok || Tsrc.Kind() != types.String {
return true
}
Tdst, ok := typeutil.CoreType(val.Type()).(*types.Slice)
if !ok {
return true
}
TdstElem, ok := types.Unalias(Tdst.Elem()).(*types.Basic)
if !ok || TdstElem.Kind() != types.Int32 {
return true
}
// Check that the result of the conversion is only used to
// range over
refs := val.Referrers()
if refs == nil {
return true
}
// Expect two refs: one for obtaining the length of the slice,
// one for accessing the elements
if len(irutil.FilterDebug(*refs)) != 2 {
// TODO(dh): right now, we check that only one place
// refers to our slice. This will miss cases such as
// ranging over the slice twice. Ideally, we'd ensure that
// the slice is only used for ranging over (without
// accessing the key), but that is harder to do because in
// IR form, ranging over a slice looks like an ordinary
// loop with index increments and slice accesses. We'd
// have to look at the associated AST node to check that
// it's a range statement.
return true
}
pass.Reportf(rng.Pos(), "should range over string, not []rune(string)")
return true
}
if source := fn.Source(); source != nil {
ast.Inspect(source, cb)
}
}
return nil, nil
}
// RedundantTypeInDeclarationChecker returns a checker that flags variable declarations with redundantly specified types.
// That is, it flags 'var v T = e' where e's type is identical to T and 'var v = e' (or 'v := e') would have the same effect.
//
// It does not flag variables under the following conditions, to reduce the number of false positives:
// - global variables – these often specify types to aid godoc
// - files that use cgo – cgo code generation and pointer checking emits redundant types
//
// It does not flag variables under the following conditions, unless flagHelpfulTypes is true, to reduce the number of noisy positives:
// - packages that import syscall or unsafe – these sometimes use this form of assignment to make sure types are as expected
// - variables named the blank identifier – a pattern used to confirm the types of variables
// - untyped expressions on the rhs – the explicitness might aid readability
func RedundantTypeInDeclarationChecker(verb string, flagHelpfulTypes bool) *analysis.Analyzer {
fn := func(pass *analysis.Pass) (interface{}, error) {
eval := func(expr ast.Expr) (types.TypeAndValue, error) {
info := &types.Info{
Types: map[ast.Expr]types.TypeAndValue{},
}
err := types.CheckExpr(pass.Fset, pass.Pkg, expr.Pos(), expr, info)
return info.Types[expr], err
}
if !flagHelpfulTypes {
// Don't look at code in low-level packages
for _, imp := range pass.Pkg.Imports() {
if imp.Path() == "syscall" || imp.Path() == "unsafe" {
return nil, nil
}
}
}
fn := func(node ast.Node) {
decl := node.(*ast.GenDecl)
if decl.Tok != token.VAR {
return
}
gen, _ := code.Generator(pass, decl.Pos())
if gen == generated.Cgo {
// TODO(dh): remove this exception once we can use UsesCgo
return
}
// Delay looking up parent AST nodes until we have to
checkedDecl := false
specLoop:
for _, spec := range decl.Specs {
spec := spec.(*ast.ValueSpec)
if spec.Type == nil {
continue
}
if len(spec.Names) != len(spec.Values) {
continue
}
Tlhs := pass.TypesInfo.TypeOf(spec.Type)
for i, v := range spec.Values {
if !flagHelpfulTypes && spec.Names[i].Name == "_" {
continue specLoop
}
Trhs := pass.TypesInfo.TypeOf(v)
if !types.Identical(Tlhs, Trhs) {
continue specLoop
}
// Some expressions are untyped and get converted to the lhs type implicitly.
// This applies to untyped constants, shift operations with an untyped lhs, and possibly others.
//
// Check if the type is truly redundant, i.e. if the type on the lhs doesn't match the default type of the untyped constant.
tv, err := eval(v)
if err != nil {
panic(err)
}
if b, ok := types.Unalias(tv.Type).(*types.Basic); ok && (b.Info()&types.IsUntyped) != 0 {
if Tlhs != types.Default(b) {
// The rhs is untyped and its default type differs from the explicit type on the lhs
continue specLoop
}
switch v := v.(type) {
case *ast.Ident:
// Only flag named constant rhs if it's a predeclared identifier.
// Don't flag other named constants, as the explicit type may aid readability.
if pass.TypesInfo.ObjectOf(v).Pkg() != nil && !flagHelpfulTypes {
continue specLoop
}
case *ast.BasicLit:
// Do flag basic literals
default:
// Don't flag untyped rhs expressions unless flagHelpfulTypes is set
if !flagHelpfulTypes {
continue specLoop
}
}
}
}
if !checkedDecl {
// Don't flag global variables. These often have explicit types for godoc's sake.
path, _ := astutil.PathEnclosingInterval(code.File(pass, decl), decl.Pos(), decl.Pos())
pathLoop:
for _, el := range path {
switch el.(type) {
case *ast.FuncDecl, *ast.FuncLit:
checkedDecl = true
break pathLoop
}
}
if !checkedDecl {
// decl is not inside a function
break specLoop
}
}
report.Report(pass, spec.Type, fmt.Sprintf("%s omit type %s from declaration; it will be inferred from the right-hand side", verb, report.Render(pass, spec.Type)), report.FilterGenerated(),
report.Fixes(edit.Fix("Remove redundant type", edit.Delete(spec.Type))))
}
}
code.Preorder(pass, fn, (*ast.GenDecl)(nil))
return nil, nil
}
return &analysis.Analyzer{
Run: fn,
Requires: []*analysis.Analyzer{generated.Analyzer, inspect.Analyzer, tokenfile.Analyzer},
}
}
|