1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package stack
import (
"fmt"
"inet.af/netstack/sync"
"inet.af/netstack/tcpip"
)
const (
// maxPendingResolutions is the maximum number of pending link-address
// resolutions.
maxPendingResolutions = 64
maxPendingPacketsPerResolution = 256
)
// pendingPacketBuffer is a pending packet buffer.
//
// TODO(gvisor.dev/issue/5331): Drop this when we drop WritePacket and only use
// WritePackets so we can use a PacketBufferList everywhere.
type pendingPacketBuffer interface {
len() int
}
func (*PacketBuffer) len() int {
return 1
}
func (p *PacketBufferList) len() int {
return p.Len()
}
type pendingPacket struct {
routeInfo RouteInfo
proto tcpip.NetworkProtocolNumber
pkt pendingPacketBuffer
}
// packetsPendingLinkResolution is a queue of packets pending link resolution.
//
// Once link resolution completes successfully, the packets will be written.
type packetsPendingLinkResolution struct {
nic *nic
mu struct {
sync.Mutex
// The packets to send once the resolver completes.
//
// The link resolution channel is used as the key for this map.
packets map[<-chan struct{}][]pendingPacket
// FIFO of channels used to cancel the oldest goroutine waiting for
// link-address resolution.
//
// cancelChans holds the same channels that are used as keys to packets.
cancelChans []<-chan struct{}
}
}
func (f *packetsPendingLinkResolution) incrementOutgoingPacketErrors(proto tcpip.NetworkProtocolNumber, pkt pendingPacketBuffer) {
n := uint64(pkt.len())
f.nic.stack.stats.IP.OutgoingPacketErrors.IncrementBy(n)
if ipEndpointStats, ok := f.nic.getNetworkEndpoint(proto).Stats().(IPNetworkEndpointStats); ok {
ipEndpointStats.IPStats().OutgoingPacketErrors.IncrementBy(n)
}
}
func (f *packetsPendingLinkResolution) init(nic *nic) {
f.mu.Lock()
defer f.mu.Unlock()
f.nic = nic
f.mu.packets = make(map[<-chan struct{}][]pendingPacket)
}
// dequeue any pending packets associated with ch.
//
// If err is nil, packets will be written and sent to the given remote link
// address.
func (f *packetsPendingLinkResolution) dequeue(ch <-chan struct{}, linkAddr tcpip.LinkAddress, err tcpip.Error) {
f.mu.Lock()
packets, ok := f.mu.packets[ch]
delete(f.mu.packets, ch)
if ok {
for i, cancelChan := range f.mu.cancelChans {
if cancelChan == ch {
f.mu.cancelChans = append(f.mu.cancelChans[:i], f.mu.cancelChans[i+1:]...)
break
}
}
}
f.mu.Unlock()
if ok {
f.dequeuePackets(packets, linkAddr, err)
}
}
// enqueue a packet to be sent once link resolution completes.
//
// If the maximum number of pending resolutions is reached, the packets
// associated with the oldest link resolution will be dequeued as if they failed
// link resolution.
func (f *packetsPendingLinkResolution) enqueue(r *Route, proto tcpip.NetworkProtocolNumber, pkt pendingPacketBuffer) (int, tcpip.Error) {
f.mu.Lock()
// Make sure we attempt resolution while holding f's lock so that we avoid
// a race where link resolution completes before we enqueue the packets.
//
// A @ T1: Call ResolvedFields (get link resolution channel)
// B @ T2: Complete link resolution, dequeue pending packets
// C @ T1: Enqueue packet that already completed link resolution (which will
// never dequeue)
//
// To make sure B does not interleave with A and C, we make sure A and C are
// done while holding the lock.
routeInfo, ch, err := r.resolvedFields(nil)
switch err.(type) {
case nil:
// The route resolved immediately, so we don't need to wait for link
// resolution to send the packet.
f.mu.Unlock()
return f.nic.writePacketBuffer(routeInfo, proto, pkt)
case *tcpip.ErrWouldBlock:
// We need to wait for link resolution to complete.
default:
f.mu.Unlock()
return 0, err
}
defer f.mu.Unlock()
packets, ok := f.mu.packets[ch]
packets = append(packets, pendingPacket{
routeInfo: routeInfo,
proto: proto,
pkt: pkt,
})
switch pkt := pkt.(type) {
case *PacketBuffer:
pkt.IncRef()
case *PacketBufferList:
pkt.IncRef()
}
if len(packets) > maxPendingPacketsPerResolution {
f.incrementOutgoingPacketErrors(packets[0].proto, packets[0].pkt)
packets[0] = pendingPacket{}
packets = packets[1:]
if numPackets := len(packets); numPackets != maxPendingPacketsPerResolution {
panic(fmt.Sprintf("holding more queued packets than expected; got = %d, want <= %d", numPackets, maxPendingPacketsPerResolution))
}
}
f.mu.packets[ch] = packets
if ok {
return pkt.len(), nil
}
cancelledPackets := f.newCancelChannelLocked(ch)
if len(cancelledPackets) != 0 {
// Dequeue the pending packets in a new goroutine to not hold up the current
// goroutine as handing link resolution failures may be a costly operation.
go f.dequeuePackets(cancelledPackets, "" /* linkAddr */, &tcpip.ErrAborted{})
}
return pkt.len(), nil
}
// newCancelChannelLocked appends the link resolution channel to a FIFO. If the
// maximum number of pending resolutions is reached, the oldest channel will be
// removed and its associated pending packets will be returned.
func (f *packetsPendingLinkResolution) newCancelChannelLocked(newCH <-chan struct{}) []pendingPacket {
f.mu.cancelChans = append(f.mu.cancelChans, newCH)
if len(f.mu.cancelChans) <= maxPendingResolutions {
return nil
}
ch := f.mu.cancelChans[0]
f.mu.cancelChans[0] = nil
f.mu.cancelChans = f.mu.cancelChans[1:]
if l := len(f.mu.cancelChans); l > maxPendingResolutions {
panic(fmt.Sprintf("max pending resolutions reached; got %d active resolutions, max = %d", l, maxPendingResolutions))
}
packets, ok := f.mu.packets[ch]
if !ok {
panic("must have a packet queue for an uncancelled channel")
}
delete(f.mu.packets, ch)
return packets
}
func (f *packetsPendingLinkResolution) dequeuePackets(packets []pendingPacket, linkAddr tcpip.LinkAddress, err tcpip.Error) {
for _, p := range packets {
if err == nil {
p.routeInfo.RemoteLinkAddress = linkAddr
_, _ = f.nic.writePacketBuffer(p.routeInfo, p.proto, p.pkt)
} else {
f.incrementOutgoingPacketErrors(p.proto, p.pkt)
if linkResolvableEP, ok := f.nic.getNetworkEndpoint(p.proto).(LinkResolvableNetworkEndpoint); ok {
switch pkt := p.pkt.(type) {
case *PacketBuffer:
linkResolvableEP.HandleLinkResolutionFailure(pkt)
case *PacketBufferList:
for pb := pkt.Front(); pb != nil; pb = pb.Next() {
linkResolvableEP.HandleLinkResolutionFailure(pb)
}
default:
panic(fmt.Sprintf("unrecognized pending packet buffer type = %T", p.pkt))
}
}
}
switch pkt := p.pkt.(type) {
case *PacketBuffer:
pkt.DecRef()
case *PacketBufferList:
pkt.DecRef()
}
}
}
|