1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*
Copyright 2024 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package patch
import (
"context"
"errors"
"fmt"
celgo "github.com/google/cel-go/cel"
celtypes "github.com/google/cel-go/common/types"
"strings"
"sigs.k8s.io/structured-merge-diff/v4/fieldpath"
"sigs.k8s.io/structured-merge-diff/v4/schema"
"sigs.k8s.io/structured-merge-diff/v4/typed"
"sigs.k8s.io/structured-merge-diff/v4/value"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/apis/meta/v1/unstructured"
"k8s.io/apimachinery/pkg/runtime"
"k8s.io/apimachinery/pkg/util/managedfields"
plugincel "k8s.io/apiserver/pkg/admission/plugin/cel"
"k8s.io/apiserver/pkg/cel/mutation/dynamic"
)
// ApplyConfigurationCondition contains the inputs needed to compile and evaluate a cel expression
// that returns an apply configuration
type ApplyConfigurationCondition struct {
Expression string
}
var _ plugincel.ExpressionAccessor = &ApplyConfigurationCondition{}
func (v *ApplyConfigurationCondition) GetExpression() string {
return v.Expression
}
func (v *ApplyConfigurationCondition) ReturnTypes() []*celgo.Type {
return []*celgo.Type{applyConfigObjectType}
}
var applyConfigObjectType = celtypes.NewObjectType("Object")
// NewApplyConfigurationPatcher creates a patcher that performs an applyConfiguration mutation.
func NewApplyConfigurationPatcher(expressionEvaluator plugincel.MutatingEvaluator) Patcher {
return &applyConfigPatcher{expressionEvaluator: expressionEvaluator}
}
type applyConfigPatcher struct {
expressionEvaluator plugincel.MutatingEvaluator
}
func (e *applyConfigPatcher) Patch(ctx context.Context, r Request, runtimeCELCostBudget int64) (runtime.Object, error) {
admissionRequest := plugincel.CreateAdmissionRequest(
r.VersionedAttributes.Attributes,
metav1.GroupVersionResource(r.MatchedResource),
metav1.GroupVersionKind(r.VersionedAttributes.VersionedKind))
compileErrors := e.expressionEvaluator.CompilationErrors()
if len(compileErrors) > 0 {
return nil, errors.Join(compileErrors...)
}
eval, _, err := e.expressionEvaluator.ForInput(ctx, r.VersionedAttributes, admissionRequest, r.OptionalVariables, r.Namespace, runtimeCELCostBudget)
if err != nil {
return nil, err
}
if eval.Error != nil {
return nil, eval.Error
}
v := eval.EvalResult
// The compiler ensures that the return type is an ObjectVal with type name of "Object".
objVal, ok := v.(*dynamic.ObjectVal)
if !ok {
// Should not happen since the compiler type checks the return type.
return nil, fmt.Errorf("unsupported return type from ApplyConfiguration expression: %v", v.Type())
}
// TODO: Object initializers are insufficiently type checked.
// In the interim, we use this sanity check to detect type mismatches
// between field names and Object initializers. For example,
// "Object.spec{ selector: Object.spec.wrong{}}" is detected as a mismatch.
// Before beta, attaching full type information both to Object initializers and
// the "object" and "oldObject" variables is needed. This will allow CEL to
// perform comprehensive runtime type checking.
err = objVal.CheckTypeNamesMatchFieldPathNames()
if err != nil {
return nil, fmt.Errorf("type mismatch: %w", err)
}
value, ok := objVal.Value().(map[string]any)
if !ok {
return nil, fmt.Errorf("invalid return type: %T", v)
}
patchObject := unstructured.Unstructured{Object: value}
patchObject.SetGroupVersionKind(r.VersionedAttributes.VersionedObject.GetObjectKind().GroupVersionKind())
patched, err := ApplyStructuredMergeDiff(r.TypeConverter, r.VersionedAttributes.VersionedObject, &patchObject)
if err != nil {
return nil, fmt.Errorf("error applying patch: %w", err)
}
return patched, nil
}
// ApplyStructuredMergeDiff applies a structured merge diff to an object and returns a copy of the object
// with the patch applied.
func ApplyStructuredMergeDiff(
typeConverter managedfields.TypeConverter,
originalObject runtime.Object,
patch *unstructured.Unstructured,
) (runtime.Object, error) {
if patch.GroupVersionKind() != originalObject.GetObjectKind().GroupVersionKind() {
return nil, fmt.Errorf("patch (%v) and original object (%v) are not of the same gvk", patch.GroupVersionKind().String(), originalObject.GetObjectKind().GroupVersionKind().String())
} else if typeConverter == nil {
return nil, fmt.Errorf("type converter must not be nil")
}
patchObjTyped, err := typeConverter.ObjectToTyped(patch)
if err != nil {
return nil, fmt.Errorf("failed to convert patch object to typed object: %w", err)
}
err = validatePatch(patchObjTyped)
if err != nil {
return nil, fmt.Errorf("invalid ApplyConfiguration: %w", err)
}
liveObjTyped, err := typeConverter.ObjectToTyped(originalObject)
if err != nil {
return nil, fmt.Errorf("failed to convert original object to typed object: %w", err)
}
newObjTyped, err := liveObjTyped.Merge(patchObjTyped)
if err != nil {
return nil, fmt.Errorf("failed to merge patch: %w", err)
}
// Our mutating admission policy sets the fields but does not track ownership.
// Newly introduced fields in the patch won't be tracked by a field manager
// (so if the original object is updated again but the mutating policy is
// not active, the fields will be dropped).
//
// This necessarily means that changes to an object by a mutating policy
// are only preserved if the policy was active at the time of the change.
// (If the policy is not active, the changes may be dropped.)
newObj, err := typeConverter.TypedToObject(newObjTyped)
if err != nil {
return nil, fmt.Errorf("failed to convert typed object to object: %w", err)
}
return newObj, nil
}
// validatePatch searches an apply configuration for any arrays, maps or structs elements that are atomic and returns
// an error if any are found.
// This prevents accidental removal of fields that can occur when the user intends to modify some
// fields in an atomic type, not realizing that all fields not explicitly set in the new value
// of the atomic will be removed.
func validatePatch(v *typed.TypedValue) error {
atomics := findAtomics(nil, v.Schema(), v.TypeRef(), v.AsValue())
if len(atomics) > 0 {
return fmt.Errorf("may not mutate atomic arrays, maps or structs: %v", strings.Join(atomics, ", "))
}
return nil
}
// findAtomics returns field paths for any atomic arrays, maps or structs found when traversing the given value.
func findAtomics(path []fieldpath.PathElement, s *schema.Schema, tr schema.TypeRef, v value.Value) (atomics []string) {
if a, ok := s.Resolve(tr); ok { // Validation pass happens before this and checks that all schemas can be resolved
if v.IsMap() && a.Map != nil {
if a.Map.ElementRelationship == schema.Atomic {
atomics = append(atomics, pathString(path))
}
v.AsMap().Iterate(func(key string, val value.Value) bool {
pe := fieldpath.PathElement{FieldName: &key}
if sf, ok := a.Map.FindField(key); ok {
tr = sf.Type
atomics = append(atomics, findAtomics(append(path, pe), s, tr, val)...)
}
return true
})
}
if v.IsList() && a.List != nil {
if a.List.ElementRelationship == schema.Atomic {
atomics = append(atomics, pathString(path))
}
list := v.AsList()
for i := 0; i < list.Length(); i++ {
pe := fieldpath.PathElement{Index: &i}
atomics = append(atomics, findAtomics(append(path, pe), s, a.List.ElementType, list.At(i))...)
}
}
}
return atomics
}
func pathString(path []fieldpath.PathElement) string {
sb := strings.Builder{}
for _, p := range path {
sb.WriteString(p.String())
}
return sb.String()
}
|