1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/*
Copyright 2014 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package handlers
import (
"context"
"fmt"
"io"
"net/http"
"time"
"golang.org/x/net/websocket"
"k8s.io/apimachinery/pkg/api/errors"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/runtime"
"k8s.io/apimachinery/pkg/util/httpstream/wsstream"
utilruntime "k8s.io/apimachinery/pkg/util/runtime"
"k8s.io/apimachinery/pkg/watch"
"k8s.io/apiserver/pkg/endpoints/handlers/negotiation"
"k8s.io/apiserver/pkg/endpoints/metrics"
apirequest "k8s.io/apiserver/pkg/endpoints/request"
"k8s.io/apiserver/pkg/features"
"k8s.io/apiserver/pkg/storage"
utilfeature "k8s.io/apiserver/pkg/util/feature"
)
// nothing will ever be sent down this channel
var neverExitWatch <-chan time.Time = make(chan time.Time)
// timeoutFactory abstracts watch timeout logic for testing
type TimeoutFactory interface {
TimeoutCh() (<-chan time.Time, func() bool)
}
// realTimeoutFactory implements timeoutFactory
type realTimeoutFactory struct {
timeout time.Duration
}
// TimeoutCh returns a channel which will receive something when the watch times out,
// and a cleanup function to call when this happens.
func (w *realTimeoutFactory) TimeoutCh() (<-chan time.Time, func() bool) {
if w.timeout == 0 {
return neverExitWatch, func() bool { return false }
}
t := time.NewTimer(w.timeout)
return t.C, t.Stop
}
// serveWatchHandler returns a handle to serve a watch response.
// TODO: the functionality in this method and in WatchServer.Serve is not cleanly decoupled.
func serveWatchHandler(watcher watch.Interface, scope *RequestScope, mediaTypeOptions negotiation.MediaTypeOptions, req *http.Request, w http.ResponseWriter, timeout time.Duration, metricsScope string, initialEventsListBlueprint runtime.Object) (http.Handler, error) {
options, err := optionsForTransform(mediaTypeOptions, req)
if err != nil {
return nil, err
}
// negotiate for the stream serializer from the scope's serializer
serializer, err := negotiation.NegotiateOutputMediaTypeStream(req, scope.Serializer, scope)
if err != nil {
return nil, err
}
framer := serializer.StreamSerializer.Framer
var encoder runtime.Encoder
if utilfeature.DefaultFeatureGate.Enabled(features.CBORServingAndStorage) {
encoder = scope.Serializer.EncoderForVersion(runtime.UseNondeterministicEncoding(serializer.StreamSerializer.Serializer), scope.Kind.GroupVersion())
} else {
encoder = scope.Serializer.EncoderForVersion(serializer.StreamSerializer.Serializer, scope.Kind.GroupVersion())
}
useTextFraming := serializer.EncodesAsText
if framer == nil {
return nil, fmt.Errorf("no framer defined for %q available for embedded encoding", serializer.MediaType)
}
// TODO: next step, get back mediaTypeOptions from negotiate and return the exact value here
mediaType := serializer.MediaType
switch mediaType {
case runtime.ContentTypeJSON:
// as-is
case runtime.ContentTypeCBOR:
// If a client indicated it accepts application/cbor (exactly one data item) on a
// watch request, set the conformant application/cbor-seq media type the watch
// response. RFC 9110 allows an origin server to deviate from the indicated
// preference rather than send a 406 (Not Acceptable) response (see
// https://www.rfc-editor.org/rfc/rfc9110.html#section-12.1-5).
mediaType = runtime.ContentTypeCBORSequence
default:
mediaType += ";stream=watch"
}
ctx := req.Context()
// locate the appropriate embedded encoder based on the transform
var negotiatedEncoder runtime.Encoder
contentKind, contentSerializer, transform := targetEncodingForTransform(scope, mediaTypeOptions, req)
if transform {
info, ok := runtime.SerializerInfoForMediaType(contentSerializer.SupportedMediaTypes(), serializer.MediaType)
if !ok {
return nil, fmt.Errorf("no encoder for %q exists in the requested target %#v", serializer.MediaType, contentSerializer)
}
if utilfeature.DefaultFeatureGate.Enabled(features.CBORServingAndStorage) {
negotiatedEncoder = contentSerializer.EncoderForVersion(runtime.UseNondeterministicEncoding(info.Serializer), contentKind.GroupVersion())
} else {
negotiatedEncoder = contentSerializer.EncoderForVersion(info.Serializer, contentKind.GroupVersion())
}
} else {
if utilfeature.DefaultFeatureGate.Enabled(features.CBORServingAndStorage) {
negotiatedEncoder = scope.Serializer.EncoderForVersion(runtime.UseNondeterministicEncoding(serializer.Serializer), contentKind.GroupVersion())
} else {
negotiatedEncoder = scope.Serializer.EncoderForVersion(serializer.Serializer, contentKind.GroupVersion())
}
}
var memoryAllocator runtime.MemoryAllocator
if encoderWithAllocator, supportsAllocator := negotiatedEncoder.(runtime.EncoderWithAllocator); supportsAllocator {
// don't put the allocator inside the embeddedEncodeFn as that would allocate memory on every call.
// instead, we allocate the buffer for the entire watch session and release it when we close the connection.
memoryAllocator = runtime.AllocatorPool.Get().(*runtime.Allocator)
negotiatedEncoder = runtime.NewEncoderWithAllocator(encoderWithAllocator, memoryAllocator)
}
var tableOptions *metav1.TableOptions
if options != nil {
if passedOptions, ok := options.(*metav1.TableOptions); ok {
tableOptions = passedOptions
} else {
return nil, fmt.Errorf("unexpected options type: %T", options)
}
}
embeddedEncoder := newWatchEmbeddedEncoder(ctx, negotiatedEncoder, mediaTypeOptions.Convert, tableOptions, scope)
if encoderWithAllocator, supportsAllocator := encoder.(runtime.EncoderWithAllocator); supportsAllocator {
if memoryAllocator == nil {
// don't put the allocator inside the embeddedEncodeFn as that would allocate memory on every call.
// instead, we allocate the buffer for the entire watch session and release it when we close the connection.
memoryAllocator = runtime.AllocatorPool.Get().(*runtime.Allocator)
}
encoder = runtime.NewEncoderWithAllocator(encoderWithAllocator, memoryAllocator)
}
var serverShuttingDownCh <-chan struct{}
if signals := apirequest.ServerShutdownSignalFrom(req.Context()); signals != nil {
serverShuttingDownCh = signals.ShuttingDown()
}
server := &WatchServer{
Watching: watcher,
Scope: scope,
UseTextFraming: useTextFraming,
MediaType: mediaType,
Framer: framer,
Encoder: encoder,
EmbeddedEncoder: embeddedEncoder,
watchListTransformerFn: newWatchListTransformer(initialEventsListBlueprint, mediaTypeOptions.Convert, negotiatedEncoder).transform,
MemoryAllocator: memoryAllocator,
TimeoutFactory: &realTimeoutFactory{timeout},
ServerShuttingDownCh: serverShuttingDownCh,
metricsScope: metricsScope,
}
if wsstream.IsWebSocketRequest(req) {
w.Header().Set("Content-Type", server.MediaType)
return websocket.Handler(server.HandleWS), nil
}
return http.HandlerFunc(server.HandleHTTP), nil
}
// WatchServer serves a watch.Interface over a websocket or vanilla HTTP.
type WatchServer struct {
Watching watch.Interface
Scope *RequestScope
// true if websocket messages should use text framing (as opposed to binary framing)
UseTextFraming bool
// the media type this watch is being served with
MediaType string
// used to frame the watch stream
Framer runtime.Framer
// used to encode the watch stream event itself
Encoder runtime.Encoder
// used to encode the nested object in the watch stream
EmbeddedEncoder runtime.Encoder
// watchListTransformerFn a function applied
// to watchlist bookmark events that transforms
// the embedded object before sending it to a client.
watchListTransformerFn watchListTransformerFunction
MemoryAllocator runtime.MemoryAllocator
TimeoutFactory TimeoutFactory
ServerShuttingDownCh <-chan struct{}
metricsScope string
}
// HandleHTTP serves a series of encoded events via HTTP with Transfer-Encoding: chunked.
// or over a websocket connection.
func (s *WatchServer) HandleHTTP(w http.ResponseWriter, req *http.Request) {
defer func() {
if s.MemoryAllocator != nil {
runtime.AllocatorPool.Put(s.MemoryAllocator)
}
}()
flusher, ok := w.(http.Flusher)
if !ok {
err := fmt.Errorf("unable to start watch - can't get http.Flusher: %#v", w)
utilruntime.HandleError(err)
s.Scope.err(errors.NewInternalError(err), w, req)
return
}
framer := s.Framer.NewFrameWriter(w)
if framer == nil {
// programmer error
err := fmt.Errorf("no stream framing support is available for media type %q", s.MediaType)
utilruntime.HandleError(err)
s.Scope.err(errors.NewBadRequest(err.Error()), w, req)
return
}
// ensure the connection times out
timeoutCh, cleanup := s.TimeoutFactory.TimeoutCh()
defer cleanup()
// begin the stream
w.Header().Set("Content-Type", s.MediaType)
w.Header().Set("Transfer-Encoding", "chunked")
w.WriteHeader(http.StatusOK)
flusher.Flush()
kind := s.Scope.Kind
watchEncoder := newWatchEncoder(req.Context(), kind, s.EmbeddedEncoder, s.Encoder, framer, s.watchListTransformerFn)
ch := s.Watching.ResultChan()
done := req.Context().Done()
for {
select {
case <-s.ServerShuttingDownCh:
// the server has signaled that it is shutting down (not accepting
// any new request), all active watch request(s) should return
// immediately here. The WithWatchTerminationDuringShutdown server
// filter will ensure that the response to the client is rate
// limited in order to avoid any thundering herd issue when the
// client(s) try to reestablish the WATCH on the other
// available apiserver instance(s).
return
case <-done:
return
case <-timeoutCh:
return
case event, ok := <-ch:
if !ok {
// End of results.
return
}
metrics.WatchEvents.WithContext(req.Context()).WithLabelValues(kind.Group, kind.Version, kind.Kind).Inc()
isWatchListLatencyRecordingRequired := shouldRecordWatchListLatency(event)
if err := watchEncoder.Encode(event); err != nil {
utilruntime.HandleError(err)
// client disconnect.
return
}
if len(ch) == 0 {
flusher.Flush()
}
if isWatchListLatencyRecordingRequired {
metrics.RecordWatchListLatency(req.Context(), s.Scope.Resource, s.metricsScope)
}
}
}
}
// HandleWS serves a series of encoded events over a websocket connection.
func (s *WatchServer) HandleWS(ws *websocket.Conn) {
defer func() {
if s.MemoryAllocator != nil {
runtime.AllocatorPool.Put(s.MemoryAllocator)
}
}()
defer ws.Close()
done := make(chan struct{})
// ensure the connection times out
timeoutCh, cleanup := s.TimeoutFactory.TimeoutCh()
defer cleanup()
go func() {
defer utilruntime.HandleCrash()
// This blocks until the connection is closed.
// Client should not send anything.
wsstream.IgnoreReceives(ws, 0)
// Once the client closes, we should also close
close(done)
}()
framer := newWebsocketFramer(ws, s.UseTextFraming)
kind := s.Scope.Kind
watchEncoder := newWatchEncoder(context.TODO(), kind, s.EmbeddedEncoder, s.Encoder, framer, s.watchListTransformerFn)
ch := s.Watching.ResultChan()
for {
select {
case <-done:
return
case <-timeoutCh:
return
case event, ok := <-ch:
if !ok {
// End of results.
return
}
if err := watchEncoder.Encode(event); err != nil {
utilruntime.HandleError(err)
// client disconnect.
return
}
}
}
}
type websocketFramer struct {
ws *websocket.Conn
useTextFraming bool
}
func newWebsocketFramer(ws *websocket.Conn, useTextFraming bool) io.Writer {
return &websocketFramer{
ws: ws,
useTextFraming: useTextFraming,
}
}
func (w *websocketFramer) Write(p []byte) (int, error) {
if w.useTextFraming {
// bytes.Buffer::String() has a special handling of nil value, but given
// we're writing serialized watch events, this will never happen here.
if err := websocket.Message.Send(w.ws, string(p)); err != nil {
return 0, err
}
return len(p), nil
}
if err := websocket.Message.Send(w.ws, p); err != nil {
return 0, err
}
return len(p), nil
}
var _ io.Writer = &websocketFramer{}
func shouldRecordWatchListLatency(event watch.Event) bool {
if event.Type != watch.Bookmark || !utilfeature.DefaultFeatureGate.Enabled(features.WatchList) {
return false
}
// as of today the initial-events-end annotation is added only to a single event
// by the watch cache and only when certain conditions are met
//
// for more please read https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/3157-watch-list
hasAnnotation, err := storage.HasInitialEventsEndBookmarkAnnotation(event.Object)
if err != nil {
utilruntime.HandleError(fmt.Errorf("unable to determine if the obj has the required annotation for measuring watchlist latency, obj %T: %v", event.Object, err))
return false
}
return hasAnnotation
}
|