File: watch.go

package info (click to toggle)
golang-k8s-apiserver 0.33.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,660 kB
  • sloc: sh: 236; makefile: 5
file content (386 lines) | stat: -rw-r--r-- 13,352 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
Copyright 2014 The Kubernetes Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package handlers

import (
	"context"
	"fmt"
	"io"
	"net/http"
	"time"

	"golang.org/x/net/websocket"

	"k8s.io/apimachinery/pkg/api/errors"
	metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
	"k8s.io/apimachinery/pkg/runtime"
	"k8s.io/apimachinery/pkg/util/httpstream/wsstream"
	utilruntime "k8s.io/apimachinery/pkg/util/runtime"
	"k8s.io/apimachinery/pkg/watch"
	"k8s.io/apiserver/pkg/endpoints/handlers/negotiation"
	"k8s.io/apiserver/pkg/endpoints/metrics"
	apirequest "k8s.io/apiserver/pkg/endpoints/request"
	"k8s.io/apiserver/pkg/features"
	"k8s.io/apiserver/pkg/storage"
	utilfeature "k8s.io/apiserver/pkg/util/feature"
)

// nothing will ever be sent down this channel
var neverExitWatch <-chan time.Time = make(chan time.Time)

// timeoutFactory abstracts watch timeout logic for testing
type TimeoutFactory interface {
	TimeoutCh() (<-chan time.Time, func() bool)
}

// realTimeoutFactory implements timeoutFactory
type realTimeoutFactory struct {
	timeout time.Duration
}

// TimeoutCh returns a channel which will receive something when the watch times out,
// and a cleanup function to call when this happens.
func (w *realTimeoutFactory) TimeoutCh() (<-chan time.Time, func() bool) {
	if w.timeout == 0 {
		return neverExitWatch, func() bool { return false }
	}
	t := time.NewTimer(w.timeout)
	return t.C, t.Stop
}

// serveWatchHandler returns a handle to serve a watch response.
// TODO: the functionality in this method and in WatchServer.Serve is not cleanly decoupled.
func serveWatchHandler(watcher watch.Interface, scope *RequestScope, mediaTypeOptions negotiation.MediaTypeOptions, req *http.Request, w http.ResponseWriter, timeout time.Duration, metricsScope string, initialEventsListBlueprint runtime.Object) (http.Handler, error) {
	options, err := optionsForTransform(mediaTypeOptions, req)
	if err != nil {
		return nil, err
	}

	// negotiate for the stream serializer from the scope's serializer
	serializer, err := negotiation.NegotiateOutputMediaTypeStream(req, scope.Serializer, scope)
	if err != nil {
		return nil, err
	}
	framer := serializer.StreamSerializer.Framer
	var encoder runtime.Encoder
	if utilfeature.DefaultFeatureGate.Enabled(features.CBORServingAndStorage) {
		encoder = scope.Serializer.EncoderForVersion(runtime.UseNondeterministicEncoding(serializer.StreamSerializer.Serializer), scope.Kind.GroupVersion())
	} else {
		encoder = scope.Serializer.EncoderForVersion(serializer.StreamSerializer.Serializer, scope.Kind.GroupVersion())
	}
	useTextFraming := serializer.EncodesAsText
	if framer == nil {
		return nil, fmt.Errorf("no framer defined for %q available for embedded encoding", serializer.MediaType)
	}
	// TODO: next step, get back mediaTypeOptions from negotiate and return the exact value here
	mediaType := serializer.MediaType
	switch mediaType {
	case runtime.ContentTypeJSON:
		// as-is
	case runtime.ContentTypeCBOR:
		// If a client indicated it accepts application/cbor (exactly one data item) on a
		// watch request, set the conformant application/cbor-seq media type the watch
		// response. RFC 9110 allows an origin server to deviate from the indicated
		// preference rather than send a 406 (Not Acceptable) response (see
		// https://www.rfc-editor.org/rfc/rfc9110.html#section-12.1-5).
		mediaType = runtime.ContentTypeCBORSequence
	default:
		mediaType += ";stream=watch"
	}

	ctx := req.Context()

	// locate the appropriate embedded encoder based on the transform
	var negotiatedEncoder runtime.Encoder
	contentKind, contentSerializer, transform := targetEncodingForTransform(scope, mediaTypeOptions, req)
	if transform {
		info, ok := runtime.SerializerInfoForMediaType(contentSerializer.SupportedMediaTypes(), serializer.MediaType)
		if !ok {
			return nil, fmt.Errorf("no encoder for %q exists in the requested target %#v", serializer.MediaType, contentSerializer)
		}
		if utilfeature.DefaultFeatureGate.Enabled(features.CBORServingAndStorage) {
			negotiatedEncoder = contentSerializer.EncoderForVersion(runtime.UseNondeterministicEncoding(info.Serializer), contentKind.GroupVersion())
		} else {
			negotiatedEncoder = contentSerializer.EncoderForVersion(info.Serializer, contentKind.GroupVersion())
		}
	} else {
		if utilfeature.DefaultFeatureGate.Enabled(features.CBORServingAndStorage) {
			negotiatedEncoder = scope.Serializer.EncoderForVersion(runtime.UseNondeterministicEncoding(serializer.Serializer), contentKind.GroupVersion())
		} else {
			negotiatedEncoder = scope.Serializer.EncoderForVersion(serializer.Serializer, contentKind.GroupVersion())
		}
	}

	var memoryAllocator runtime.MemoryAllocator

	if encoderWithAllocator, supportsAllocator := negotiatedEncoder.(runtime.EncoderWithAllocator); supportsAllocator {
		// don't put the allocator inside the embeddedEncodeFn as that would allocate memory on every call.
		// instead, we allocate the buffer for the entire watch session and release it when we close the connection.
		memoryAllocator = runtime.AllocatorPool.Get().(*runtime.Allocator)
		negotiatedEncoder = runtime.NewEncoderWithAllocator(encoderWithAllocator, memoryAllocator)
	}
	var tableOptions *metav1.TableOptions
	if options != nil {
		if passedOptions, ok := options.(*metav1.TableOptions); ok {
			tableOptions = passedOptions
		} else {
			return nil, fmt.Errorf("unexpected options type: %T", options)
		}
	}
	embeddedEncoder := newWatchEmbeddedEncoder(ctx, negotiatedEncoder, mediaTypeOptions.Convert, tableOptions, scope)

	if encoderWithAllocator, supportsAllocator := encoder.(runtime.EncoderWithAllocator); supportsAllocator {
		if memoryAllocator == nil {
			// don't put the allocator inside the embeddedEncodeFn as that would allocate memory on every call.
			// instead, we allocate the buffer for the entire watch session and release it when we close the connection.
			memoryAllocator = runtime.AllocatorPool.Get().(*runtime.Allocator)
		}
		encoder = runtime.NewEncoderWithAllocator(encoderWithAllocator, memoryAllocator)
	}

	var serverShuttingDownCh <-chan struct{}
	if signals := apirequest.ServerShutdownSignalFrom(req.Context()); signals != nil {
		serverShuttingDownCh = signals.ShuttingDown()
	}

	server := &WatchServer{
		Watching: watcher,
		Scope:    scope,

		UseTextFraming:  useTextFraming,
		MediaType:       mediaType,
		Framer:          framer,
		Encoder:         encoder,
		EmbeddedEncoder: embeddedEncoder,

		watchListTransformerFn: newWatchListTransformer(initialEventsListBlueprint, mediaTypeOptions.Convert, negotiatedEncoder).transform,

		MemoryAllocator:      memoryAllocator,
		TimeoutFactory:       &realTimeoutFactory{timeout},
		ServerShuttingDownCh: serverShuttingDownCh,

		metricsScope: metricsScope,
	}

	if wsstream.IsWebSocketRequest(req) {
		w.Header().Set("Content-Type", server.MediaType)
		return websocket.Handler(server.HandleWS), nil
	}
	return http.HandlerFunc(server.HandleHTTP), nil
}

// WatchServer serves a watch.Interface over a websocket or vanilla HTTP.
type WatchServer struct {
	Watching watch.Interface
	Scope    *RequestScope

	// true if websocket messages should use text framing (as opposed to binary framing)
	UseTextFraming bool
	// the media type this watch is being served with
	MediaType string
	// used to frame the watch stream
	Framer runtime.Framer
	// used to encode the watch stream event itself
	Encoder runtime.Encoder
	// used to encode the nested object in the watch stream
	EmbeddedEncoder runtime.Encoder
	// watchListTransformerFn a function applied
	// to watchlist bookmark events that transforms
	// the embedded object before sending it to a client.
	watchListTransformerFn watchListTransformerFunction

	MemoryAllocator      runtime.MemoryAllocator
	TimeoutFactory       TimeoutFactory
	ServerShuttingDownCh <-chan struct{}

	metricsScope string
}

// HandleHTTP serves a series of encoded events via HTTP with Transfer-Encoding: chunked.
// or over a websocket connection.
func (s *WatchServer) HandleHTTP(w http.ResponseWriter, req *http.Request) {
	defer func() {
		if s.MemoryAllocator != nil {
			runtime.AllocatorPool.Put(s.MemoryAllocator)
		}
	}()

	flusher, ok := w.(http.Flusher)
	if !ok {
		err := fmt.Errorf("unable to start watch - can't get http.Flusher: %#v", w)
		utilruntime.HandleError(err)
		s.Scope.err(errors.NewInternalError(err), w, req)
		return
	}

	framer := s.Framer.NewFrameWriter(w)
	if framer == nil {
		// programmer error
		err := fmt.Errorf("no stream framing support is available for media type %q", s.MediaType)
		utilruntime.HandleError(err)
		s.Scope.err(errors.NewBadRequest(err.Error()), w, req)
		return
	}

	// ensure the connection times out
	timeoutCh, cleanup := s.TimeoutFactory.TimeoutCh()
	defer cleanup()

	// begin the stream
	w.Header().Set("Content-Type", s.MediaType)
	w.Header().Set("Transfer-Encoding", "chunked")
	w.WriteHeader(http.StatusOK)
	flusher.Flush()

	kind := s.Scope.Kind
	watchEncoder := newWatchEncoder(req.Context(), kind, s.EmbeddedEncoder, s.Encoder, framer, s.watchListTransformerFn)
	ch := s.Watching.ResultChan()
	done := req.Context().Done()

	for {
		select {
		case <-s.ServerShuttingDownCh:
			// the server has signaled that it is shutting down (not accepting
			// any new request), all active watch request(s) should return
			// immediately here. The WithWatchTerminationDuringShutdown server
			// filter will ensure that the response to the client is rate
			// limited in order to avoid any thundering herd issue when the
			// client(s) try to reestablish the WATCH on the other
			// available apiserver instance(s).
			return
		case <-done:
			return
		case <-timeoutCh:
			return
		case event, ok := <-ch:
			if !ok {
				// End of results.
				return
			}
			metrics.WatchEvents.WithContext(req.Context()).WithLabelValues(kind.Group, kind.Version, kind.Kind).Inc()
			isWatchListLatencyRecordingRequired := shouldRecordWatchListLatency(event)

			if err := watchEncoder.Encode(event); err != nil {
				utilruntime.HandleError(err)
				// client disconnect.
				return
			}

			if len(ch) == 0 {
				flusher.Flush()
			}
			if isWatchListLatencyRecordingRequired {
				metrics.RecordWatchListLatency(req.Context(), s.Scope.Resource, s.metricsScope)
			}
		}
	}
}

// HandleWS serves a series of encoded events over a websocket connection.
func (s *WatchServer) HandleWS(ws *websocket.Conn) {
	defer func() {
		if s.MemoryAllocator != nil {
			runtime.AllocatorPool.Put(s.MemoryAllocator)
		}
	}()

	defer ws.Close()
	done := make(chan struct{})
	// ensure the connection times out
	timeoutCh, cleanup := s.TimeoutFactory.TimeoutCh()
	defer cleanup()

	go func() {
		defer utilruntime.HandleCrash()
		// This blocks until the connection is closed.
		// Client should not send anything.
		wsstream.IgnoreReceives(ws, 0)
		// Once the client closes, we should also close
		close(done)
	}()

	framer := newWebsocketFramer(ws, s.UseTextFraming)

	kind := s.Scope.Kind
	watchEncoder := newWatchEncoder(context.TODO(), kind, s.EmbeddedEncoder, s.Encoder, framer, s.watchListTransformerFn)
	ch := s.Watching.ResultChan()

	for {
		select {
		case <-done:
			return
		case <-timeoutCh:
			return
		case event, ok := <-ch:
			if !ok {
				// End of results.
				return
			}

			if err := watchEncoder.Encode(event); err != nil {
				utilruntime.HandleError(err)
				// client disconnect.
				return
			}
		}
	}
}

type websocketFramer struct {
	ws             *websocket.Conn
	useTextFraming bool
}

func newWebsocketFramer(ws *websocket.Conn, useTextFraming bool) io.Writer {
	return &websocketFramer{
		ws:             ws,
		useTextFraming: useTextFraming,
	}
}

func (w *websocketFramer) Write(p []byte) (int, error) {
	if w.useTextFraming {
		// bytes.Buffer::String() has a special handling of nil value, but given
		// we're writing serialized watch events, this will never happen here.
		if err := websocket.Message.Send(w.ws, string(p)); err != nil {
			return 0, err
		}
		return len(p), nil
	}
	if err := websocket.Message.Send(w.ws, p); err != nil {
		return 0, err
	}
	return len(p), nil
}

var _ io.Writer = &websocketFramer{}

func shouldRecordWatchListLatency(event watch.Event) bool {
	if event.Type != watch.Bookmark || !utilfeature.DefaultFeatureGate.Enabled(features.WatchList) {
		return false
	}
	// as of today the initial-events-end annotation is added only to a single event
	// by the watch cache and only when certain conditions are met
	//
	// for more please read https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/3157-watch-list
	hasAnnotation, err := storage.HasInitialEventsEndBookmarkAnnotation(event.Object)
	if err != nil {
		utilruntime.HandleError(fmt.Errorf("unable to determine if the obj has the required annotation for measuring watchlist latency, obj %T: %v", event.Object, err))
		return false
	}
	return hasAnnotation
}