1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
/*
Copyright 2019 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package filters
import (
"context"
"fmt"
"net/http"
"runtime"
"strconv"
"sync"
"sync/atomic"
"time"
flowcontrol "k8s.io/api/flowcontrol/v1"
apitypes "k8s.io/apimachinery/pkg/types"
epmetrics "k8s.io/apiserver/pkg/endpoints/metrics"
apirequest "k8s.io/apiserver/pkg/endpoints/request"
"k8s.io/apiserver/pkg/server/httplog"
utilflowcontrol "k8s.io/apiserver/pkg/util/flowcontrol"
fcmetrics "k8s.io/apiserver/pkg/util/flowcontrol/metrics"
flowcontrolrequest "k8s.io/apiserver/pkg/util/flowcontrol/request"
"k8s.io/klog/v2"
utilsclock "k8s.io/utils/clock"
)
// PriorityAndFairnessClassification identifies the results of
// classification for API Priority and Fairness
type PriorityAndFairnessClassification struct {
FlowSchemaName string
FlowSchemaUID apitypes.UID
PriorityLevelName string
PriorityLevelUID apitypes.UID
}
// waitingMark tracks requests waiting rather than being executed
var waitingMark = &requestWatermark{
phase: epmetrics.WaitingPhase,
}
var atomicMutatingExecuting, atomicReadOnlyExecuting atomic.Int32
var atomicMutatingWaiting, atomicReadOnlyWaiting atomic.Int32
// newInitializationSignal is defined for testing purposes.
var newInitializationSignal = utilflowcontrol.NewInitializationSignal
func truncateLogField(s string) string {
const maxFieldLogLength = 64
if len(s) > maxFieldLogLength {
s = s[0:maxFieldLogLength]
}
return s
}
var initAPFOnce sync.Once
type priorityAndFairnessHandler struct {
handler http.Handler
longRunningRequestCheck apirequest.LongRunningRequestCheck
fcIfc utilflowcontrol.Interface
workEstimator flowcontrolrequest.WorkEstimatorFunc
// droppedRequests tracks the history of dropped requests for
// the purpose of computing RetryAfter header to avoid system
// overload.
droppedRequests utilflowcontrol.DroppedRequestsTracker
// newReqWaitCtxFn creates a derived context with a deadline
// of how long a given request can wait in its queue.
newReqWaitCtxFn func(context.Context) (context.Context, context.CancelFunc)
}
func (h *priorityAndFairnessHandler) Handle(w http.ResponseWriter, r *http.Request) {
ctx := r.Context()
requestInfo, ok := apirequest.RequestInfoFrom(ctx)
if !ok {
handleError(w, r, fmt.Errorf("no RequestInfo found in context"))
return
}
user, ok := apirequest.UserFrom(ctx)
if !ok {
handleError(w, r, fmt.Errorf("no User found in context"))
return
}
isWatchRequest := watchVerbs.Has(requestInfo.Verb)
// Skip tracking long running non-watch requests.
if h.longRunningRequestCheck != nil && h.longRunningRequestCheck(r, requestInfo) && !isWatchRequest {
klog.V(6).Infof("Serving RequestInfo=%#+v, user.Info=%#+v as longrunning\n", requestInfo, user)
h.handler.ServeHTTP(w, r)
return
}
var classification *PriorityAndFairnessClassification
noteFn := func(fs *flowcontrol.FlowSchema, pl *flowcontrol.PriorityLevelConfiguration, flowDistinguisher string) {
classification = &PriorityAndFairnessClassification{
FlowSchemaName: fs.Name,
FlowSchemaUID: fs.UID,
PriorityLevelName: pl.Name,
PriorityLevelUID: pl.UID,
}
httplog.AddKeyValue(ctx, "apf_pl", truncateLogField(pl.Name))
httplog.AddKeyValue(ctx, "apf_fs", truncateLogField(fs.Name))
}
// estimateWork is called, if at all, after noteFn
estimateWork := func() flowcontrolrequest.WorkEstimate {
if classification == nil {
// workEstimator is being invoked before classification of
// the request has completed, we should never be here though.
klog.ErrorS(fmt.Errorf("workEstimator is being invoked before classification of the request has completed"),
"Using empty FlowSchema and PriorityLevelConfiguration name", "verb", r.Method, "URI", r.RequestURI)
return h.workEstimator(r, "", "")
}
workEstimate := h.workEstimator(r, classification.FlowSchemaName, classification.PriorityLevelName)
fcmetrics.ObserveWorkEstimatedSeats(classification.PriorityLevelName, classification.FlowSchemaName, workEstimate.MaxSeats())
httplog.AddKeyValue(ctx, "apf_iseats", workEstimate.InitialSeats)
httplog.AddKeyValue(ctx, "apf_fseats", workEstimate.FinalSeats)
httplog.AddKeyValue(ctx, "apf_additionalLatency", workEstimate.AdditionalLatency)
return workEstimate
}
var served bool
isMutatingRequest := !nonMutatingRequestVerbs.Has(requestInfo.Verb)
noteExecutingDelta := func(delta int32) {
if isMutatingRequest {
watermark.recordMutating(int(atomicMutatingExecuting.Add(delta)))
} else {
watermark.recordReadOnly(int(atomicReadOnlyExecuting.Add(delta)))
}
}
noteWaitingDelta := func(delta int32) {
if isMutatingRequest {
waitingMark.recordMutating(int(atomicMutatingWaiting.Add(delta)))
} else {
waitingMark.recordReadOnly(int(atomicReadOnlyWaiting.Add(delta)))
}
}
queueNote := func(inQueue bool) {
if inQueue {
noteWaitingDelta(1)
} else {
noteWaitingDelta(-1)
}
}
digest := utilflowcontrol.RequestDigest{
RequestInfo: requestInfo,
User: user,
}
if isWatchRequest {
// This channel blocks calling handler.ServeHTTP() until closed, and is closed inside execute().
// If APF rejects the request, it is never closed.
shouldStartWatchCh := make(chan struct{})
watchInitializationSignal := newInitializationSignal()
// This wraps the request passed to handler.ServeHTTP(),
// setting a context that plumbs watchInitializationSignal to storage
var watchReq *http.Request
// This is set inside execute(), prior to closing shouldStartWatchCh.
// If the request is rejected by APF it is left nil.
var forgetWatch utilflowcontrol.ForgetWatchFunc
defer func() {
// Protect from the situation when request will not reach storage layer
// and the initialization signal will not be send.
if watchInitializationSignal != nil {
watchInitializationSignal.Signal()
}
// Forget the watcher if it was registered.
//
// This is race-free because by this point, one of the following occurred:
// case <-shouldStartWatchCh: execute() completed the assignment to forgetWatch
// case <-resultCh: Handle() completed, and Handle() does not return
// while execute() is running
if forgetWatch != nil {
forgetWatch()
}
}()
execute := func() {
startedAt := time.Now()
defer func() {
httplog.AddKeyValue(ctx, "apf_init_latency", time.Since(startedAt))
}()
noteExecutingDelta(1)
defer noteExecutingDelta(-1)
served = true
setResponseHeaders(classification, w)
forgetWatch = h.fcIfc.RegisterWatch(r)
// Notify the main thread that we're ready to start the watch.
close(shouldStartWatchCh)
// Wait until the request is finished from the APF point of view
// (which is when its initialization is done).
watchInitializationSignal.Wait()
}
// Ensure that an item can be put to resultCh asynchronously.
resultCh := make(chan interface{}, 1)
// Call Handle in a separate goroutine.
// The reason for it is that from APF point of view, the request processing
// finishes as soon as watch is initialized (which is generally orders of
// magnitude faster then the watch request itself). This means that Handle()
// call finishes much faster and for performance reasons we want to reduce
// the number of running goroutines - so we run the shorter thing in a
// dedicated goroutine and the actual watch handler in the main one.
go func() {
defer func() {
err := recover()
// do not wrap the sentinel ErrAbortHandler panic value
if err != nil && err != http.ErrAbortHandler {
// Same as stdlib http server code. Manually allocate stack
// trace buffer size to prevent excessively large logs
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
err = fmt.Sprintf("%v\n%s", err, buf)
}
// Ensure that the result is put into resultCh independently of the panic.
resultCh <- err
}()
// We create handleCtx with an adjusted deadline, for two reasons.
// One is to limit the time the request waits before its execution starts.
// The other reason for it is that Handle() underneath may start additional goroutine
// that is blocked on context cancellation. However, from APF point of view,
// we don't want to wait until the whole watch request is processed (which is
// when it context is actually cancelled) - we want to unblock the goroutine as
// soon as the request is processed from the APF point of view.
//
// Note that we explicitly do NOT call the actuall handler using that context
// to avoid cancelling request too early.
handleCtx, handleCtxCancel := h.newReqWaitCtxFn(ctx)
defer handleCtxCancel()
// Note that Handle will return irrespective of whether the request
// executes or is rejected. In the latter case, the function will return
// without calling the passed `execute` function.
h.fcIfc.Handle(handleCtx, digest, noteFn, estimateWork, queueNote, execute)
}()
select {
case <-shouldStartWatchCh:
func() {
// TODO: if both goroutines panic, propagate the stack traces from both
// goroutines so they are logged properly:
defer func() {
// Protect from the situation when request will not reach storage layer
// and the initialization signal will not be send.
// It has to happen before waiting on the resultCh below.
watchInitializationSignal.Signal()
// TODO: Consider finishing the request as soon as Handle call panics.
if err := <-resultCh; err != nil {
panic(err)
}
}()
watchCtx := utilflowcontrol.WithInitializationSignal(ctx, watchInitializationSignal)
watchReq = r.WithContext(watchCtx)
h.handler.ServeHTTP(w, watchReq)
}()
case err := <-resultCh:
if err != nil {
panic(err)
}
}
} else {
execute := func() {
noteExecutingDelta(1)
defer noteExecutingDelta(-1)
served = true
setResponseHeaders(classification, w)
h.handler.ServeHTTP(w, r)
}
func() {
handleCtx, cancelFn := h.newReqWaitCtxFn(ctx)
defer cancelFn()
h.fcIfc.Handle(handleCtx, digest, noteFn, estimateWork, queueNote, execute)
}()
}
if !served {
setResponseHeaders(classification, w)
epmetrics.RecordDroppedRequest(r, requestInfo, epmetrics.APIServerComponent, isMutatingRequest)
epmetrics.RecordRequestTermination(r, requestInfo, epmetrics.APIServerComponent, http.StatusTooManyRequests)
h.droppedRequests.RecordDroppedRequest(classification.PriorityLevelName)
// TODO(wojtek-t): Idea from deads2k: we can consider some jittering and in case of non-int
// number, just return the truncated result and sleep the remainder server-side.
tooManyRequests(r, w, strconv.Itoa(int(h.droppedRequests.GetRetryAfter(classification.PriorityLevelName))))
}
}
// WithPriorityAndFairness limits the number of in-flight
// requests in a fine-grained way.
func WithPriorityAndFairness(
handler http.Handler,
longRunningRequestCheck apirequest.LongRunningRequestCheck,
fcIfc utilflowcontrol.Interface,
workEstimator flowcontrolrequest.WorkEstimatorFunc,
defaultRequestWaitLimit time.Duration,
) http.Handler {
if fcIfc == nil {
klog.Warningf("priority and fairness support not found, skipping")
return handler
}
initAPFOnce.Do(func() {
initMaxInFlight(0, 0)
// Fetching these gauges is delayed until after their underlying metric has been registered
// so that this latches onto the efficient implementation.
waitingMark.readOnlyObserver = fcmetrics.GetWaitingReadonlyConcurrency()
waitingMark.mutatingObserver = fcmetrics.GetWaitingMutatingConcurrency()
})
clock := &utilsclock.RealClock{}
newReqWaitCtxFn := func(ctx context.Context) (context.Context, context.CancelFunc) {
return getRequestWaitContext(ctx, defaultRequestWaitLimit, clock)
}
priorityAndFairnessHandler := &priorityAndFairnessHandler{
handler: handler,
longRunningRequestCheck: longRunningRequestCheck,
fcIfc: fcIfc,
workEstimator: workEstimator,
droppedRequests: utilflowcontrol.NewDroppedRequestsTracker(),
newReqWaitCtxFn: newReqWaitCtxFn,
}
return http.HandlerFunc(priorityAndFairnessHandler.Handle)
}
// StartPriorityAndFairnessWatermarkMaintenance starts the goroutines to observe and maintain watermarks for
// priority-and-fairness requests.
func StartPriorityAndFairnessWatermarkMaintenance(stopCh <-chan struct{}) {
startWatermarkMaintenance(watermark, stopCh)
startWatermarkMaintenance(waitingMark, stopCh)
}
func setResponseHeaders(classification *PriorityAndFairnessClassification, w http.ResponseWriter) {
if classification == nil {
return
}
// We intentionally set the UID of the flow-schema and priority-level instead of name. This is so that
// the names that cluster-admins choose for categorization and priority levels are not exposed, also
// the names might make it obvious to the users that they are rejected due to classification with low priority.
w.Header().Set(flowcontrol.ResponseHeaderMatchedPriorityLevelConfigurationUID, string(classification.PriorityLevelUID))
w.Header().Set(flowcontrol.ResponseHeaderMatchedFlowSchemaUID, string(classification.FlowSchemaUID))
}
func tooManyRequests(req *http.Request, w http.ResponseWriter, retryAfter string) {
// Return a 429 status indicating "Too Many Requests"
w.Header().Set("Retry-After", retryAfter)
http.Error(w, "Too many requests, please try again later.", http.StatusTooManyRequests)
}
// getRequestWaitContext returns a new context with a deadline of how
// long the request is allowed to wait before it is removed from its
// queue and rejected.
// The context.CancelFunc returned must never be nil and the caller is
// responsible for calling the CancelFunc function for cleanup.
// - ctx: the context associated with the request (it may or may
// not have a deadline).
// - defaultRequestWaitLimit: the default wait duration that is used
// if the request context does not have any deadline.
// (a) initialization of a watch or
// (b) a request whose context has no deadline
//
// clock comes in handy for testing the function
func getRequestWaitContext(ctx context.Context, defaultRequestWaitLimit time.Duration, clock utilsclock.PassiveClock) (context.Context, context.CancelFunc) {
if ctx.Err() != nil {
return ctx, func() {}
}
reqArrivedAt := clock.Now()
if reqReceivedTimestamp, ok := apirequest.ReceivedTimestampFrom(ctx); ok {
reqArrivedAt = reqReceivedTimestamp
}
// a) we will allow the request to wait in the queue for one
// fourth of the time of its allotted deadline.
// b) if the request context does not have any deadline
// then we default to 'defaultRequestWaitLimit'
// in any case, the wait limit for any request must not
// exceed the hard limit of 1m
//
// request has deadline:
// wait-limit = min(remaining deadline / 4, 1m)
// request has no deadline:
// wait-limit = min(defaultRequestWaitLimit, 1m)
thisReqWaitLimit := defaultRequestWaitLimit
if deadline, ok := ctx.Deadline(); ok {
thisReqWaitLimit = deadline.Sub(reqArrivedAt) / 4
}
if thisReqWaitLimit > time.Minute {
thisReqWaitLimit = time.Minute
}
return context.WithDeadline(ctx, reqArrivedAt.Add(thisReqWaitLimit))
}
|