1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
/*
Copyright 2023 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package remotecommand
import (
"context"
"errors"
"fmt"
"io"
"net"
"net/http"
"sync"
"time"
gwebsocket "github.com/gorilla/websocket"
v1 "k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/util/httpstream"
"k8s.io/apimachinery/pkg/util/remotecommand"
restclient "k8s.io/client-go/rest"
"k8s.io/client-go/transport/websocket"
"k8s.io/klog/v2"
)
// writeDeadline defines the time that a client-side write to the websocket
// connection must complete before an i/o timeout occurs.
const writeDeadline = 60 * time.Second
var (
_ Executor = &wsStreamExecutor{}
_ streamCreator = &wsStreamCreator{}
_ httpstream.Stream = &stream{}
streamType2streamID = map[string]byte{
v1.StreamTypeStdin: remotecommand.StreamStdIn,
v1.StreamTypeStdout: remotecommand.StreamStdOut,
v1.StreamTypeStderr: remotecommand.StreamStdErr,
v1.StreamTypeError: remotecommand.StreamErr,
v1.StreamTypeResize: remotecommand.StreamResize,
}
)
const (
// pingPeriod defines how often a heartbeat "ping" message is sent.
pingPeriod = 5 * time.Second
// pingReadDeadline defines the time waiting for a response heartbeat
// "pong" message before a timeout error occurs for websocket reading.
// This duration must always be greater than the "pingPeriod". By defining
// this deadline in terms of the ping period, we are essentially saying
// we can drop "X" (e.g. 12) pings before firing the timeout.
pingReadDeadline = (pingPeriod * 12) + (1 * time.Second)
)
// wsStreamExecutor handles transporting standard shell streams over an httpstream connection.
type wsStreamExecutor struct {
transport http.RoundTripper
upgrader websocket.ConnectionHolder
method string
url string
// requested protocols in priority order (e.g. v5.channel.k8s.io before v4.channel.k8s.io).
protocols []string
// selected protocol from the handshake process; could be empty string if handshake fails.
negotiated string
// period defines how often a "ping" heartbeat message is sent to the other endpoint.
heartbeatPeriod time.Duration
// deadline defines the amount of time before "pong" response must be received.
heartbeatDeadline time.Duration
}
func NewWebSocketExecutor(config *restclient.Config, method, url string) (Executor, error) {
// Only supports V5 protocol for correct version skew functionality.
// Previous api servers will proxy upgrade requests to legacy websocket
// servers on container runtimes which support V1-V4. These legacy
// websocket servers will not handle the new CLOSE signal.
return NewWebSocketExecutorForProtocols(config, method, url, remotecommand.StreamProtocolV5Name)
}
// NewWebSocketExecutorForProtocols allows to execute commands via a WebSocket connection.
func NewWebSocketExecutorForProtocols(config *restclient.Config, method, url string, protocols ...string) (Executor, error) {
transport, upgrader, err := websocket.RoundTripperFor(config)
if err != nil {
return nil, fmt.Errorf("error creating websocket transports: %v", err)
}
return &wsStreamExecutor{
transport: transport,
upgrader: upgrader,
method: method,
url: url,
protocols: protocols,
heartbeatPeriod: pingPeriod,
heartbeatDeadline: pingReadDeadline,
}, nil
}
// Deprecated: use StreamWithContext instead to avoid possible resource leaks.
// See https://github.com/kubernetes/kubernetes/pull/103177 for details.
func (e *wsStreamExecutor) Stream(options StreamOptions) error {
return e.StreamWithContext(context.Background(), options)
}
// StreamWithContext upgrades an HTTPRequest to a WebSocket connection, and starts the various
// goroutines to implement the necessary streams over the connection. The "options" parameter
// defines which streams are requested. Returns an error if one occurred. This method is NOT
// safe to run concurrently with the same executor (because of the state stored in the upgrader).
func (e *wsStreamExecutor) StreamWithContext(ctx context.Context, options StreamOptions) error {
req, err := http.NewRequestWithContext(ctx, e.method, e.url, nil)
if err != nil {
return err
}
conn, err := websocket.Negotiate(e.transport, e.upgrader, req, e.protocols...)
if err != nil {
return err
}
if conn == nil {
panic(fmt.Errorf("websocket connection is nil"))
}
defer conn.Close()
e.negotiated = conn.Subprotocol()
klog.V(4).Infof("The subprotocol is %s", e.negotiated)
var streamer streamProtocolHandler
switch e.negotiated {
case remotecommand.StreamProtocolV5Name:
streamer = newStreamProtocolV5(options)
case remotecommand.StreamProtocolV4Name:
streamer = newStreamProtocolV4(options)
case remotecommand.StreamProtocolV3Name:
streamer = newStreamProtocolV3(options)
case remotecommand.StreamProtocolV2Name:
streamer = newStreamProtocolV2(options)
case "":
klog.V(4).Infof("The server did not negotiate a streaming protocol version. Falling back to %s", remotecommand.StreamProtocolV1Name)
fallthrough
case remotecommand.StreamProtocolV1Name:
streamer = newStreamProtocolV1(options)
}
panicChan := make(chan any, 1)
errorChan := make(chan error, 1)
go func() {
defer func() {
if p := recover(); p != nil {
panicChan <- p
}
}()
creator := newWSStreamCreator(conn)
go creator.readDemuxLoop(
e.upgrader.DataBufferSize(),
e.heartbeatPeriod,
e.heartbeatDeadline,
)
errorChan <- streamer.stream(creator)
}()
select {
case p := <-panicChan:
panic(p)
case err := <-errorChan:
return err
case <-ctx.Done():
return ctx.Err()
}
}
type wsStreamCreator struct {
conn *gwebsocket.Conn
// Protects writing to websocket connection; reading is lock-free
connWriteLock sync.Mutex
// map of stream id to stream; multiple streams read/write the connection
streams map[byte]*stream
streamsMu sync.Mutex
// setStreamErr holds the error to return to anyone calling setStreams.
// this is populated in closeAllStreamReaders
setStreamErr error
}
func newWSStreamCreator(conn *gwebsocket.Conn) *wsStreamCreator {
return &wsStreamCreator{
conn: conn,
streams: map[byte]*stream{},
}
}
func (c *wsStreamCreator) getStream(id byte) *stream {
c.streamsMu.Lock()
defer c.streamsMu.Unlock()
return c.streams[id]
}
func (c *wsStreamCreator) setStream(id byte, s *stream) error {
c.streamsMu.Lock()
defer c.streamsMu.Unlock()
if c.setStreamErr != nil {
return c.setStreamErr
}
c.streams[id] = s
return nil
}
// CreateStream uses id from passed headers to create a stream over "c.conn" connection.
// Returns a Stream structure or nil and an error if one occurred.
func (c *wsStreamCreator) CreateStream(headers http.Header) (httpstream.Stream, error) {
streamType := headers.Get(v1.StreamType)
id, ok := streamType2streamID[streamType]
if !ok {
return nil, fmt.Errorf("unknown stream type: %s", streamType)
}
if s := c.getStream(id); s != nil {
return nil, fmt.Errorf("duplicate stream for type %s", streamType)
}
reader, writer := io.Pipe()
s := &stream{
headers: headers,
readPipe: reader,
writePipe: writer,
conn: c.conn,
connWriteLock: &c.connWriteLock,
id: id,
}
if err := c.setStream(id, s); err != nil {
_ = s.writePipe.Close()
_ = s.readPipe.Close()
return nil, err
}
return s, nil
}
// readDemuxLoop is the lock-free reading processor for this endpoint of the websocket
// connection. This loop reads the connection, and demultiplexes the data
// into one of the individual stream pipes (by checking the stream id). This
// loop can *not* be run concurrently, because there can only be one websocket
// connection reader at a time (a read mutex would provide no benefit).
func (c *wsStreamCreator) readDemuxLoop(bufferSize int, period time.Duration, deadline time.Duration) {
// Initialize and start the ping/pong heartbeat.
h := newHeartbeat(c.conn, period, deadline)
// Set initial timeout for websocket connection reading.
if err := c.conn.SetReadDeadline(time.Now().Add(deadline)); err != nil {
klog.Errorf("Websocket initial setting read deadline failed %v", err)
return
}
go h.start()
// Buffer size must correspond to the same size allocated
// for the read buffer during websocket client creation. A
// difference can cause incomplete connection reads.
readBuffer := make([]byte, bufferSize)
for {
// NextReader() only returns data messages (BinaryMessage or Text
// Message). Even though this call will never return control frames
// such as ping, pong, or close, this call is necessary for these
// message types to be processed. There can only be one reader
// at a time, so this reader loop must *not* be run concurrently;
// there is no lock for reading. Calling "NextReader()" before the
// current reader has been processed will close the current reader.
// If the heartbeat read deadline times out, this "NextReader()" will
// return an i/o error, and error handling will clean up.
messageType, r, err := c.conn.NextReader()
if err != nil {
websocketErr, ok := err.(*gwebsocket.CloseError)
if ok && websocketErr.Code == gwebsocket.CloseNormalClosure {
err = nil // readers will get io.EOF as it's a normal closure
} else {
err = fmt.Errorf("next reader: %w", err)
}
c.closeAllStreamReaders(err)
return
}
// All remote command protocols send/receive only binary data messages.
if messageType != gwebsocket.BinaryMessage {
c.closeAllStreamReaders(fmt.Errorf("unexpected message type: %d", messageType))
return
}
// It's ok to read just a single byte because the underlying library wraps the actual
// connection with a buffered reader anyway.
_, err = io.ReadFull(r, readBuffer[:1])
if err != nil {
c.closeAllStreamReaders(fmt.Errorf("read stream id: %w", err))
return
}
streamID := readBuffer[0]
s := c.getStream(streamID)
if s == nil {
klog.Errorf("Unknown stream id %d, discarding message", streamID)
continue
}
for {
nr, errRead := r.Read(readBuffer)
if nr > 0 {
// Write the data to the stream's pipe. This can block.
_, errWrite := s.writePipe.Write(readBuffer[:nr])
if errWrite != nil {
// Pipe must have been closed by the stream user.
// Nothing to do, discard the message.
break
}
}
if errRead != nil {
if errRead == io.EOF {
break
}
c.closeAllStreamReaders(fmt.Errorf("read message: %w", err))
return
}
}
}
}
// closeAllStreamReaders closes readers in all streams.
// This unblocks all stream.Read() calls, and keeps any future streams from being created.
func (c *wsStreamCreator) closeAllStreamReaders(err error) {
c.streamsMu.Lock()
defer c.streamsMu.Unlock()
for _, s := range c.streams {
// Closing writePipe unblocks all readPipe.Read() callers and prevents any future writes.
_ = s.writePipe.CloseWithError(err)
}
// ensure callers to setStreams receive an error after this point
if err != nil {
c.setStreamErr = err
} else {
c.setStreamErr = fmt.Errorf("closed all streams")
}
}
type stream struct {
headers http.Header
readPipe *io.PipeReader
writePipe *io.PipeWriter
// conn is used for writing directly into the connection.
// Is nil after Close() / Reset() to prevent future writes.
conn *gwebsocket.Conn
// connWriteLock protects conn against concurrent write operations. There must be a single writer and a single reader only.
// The mutex is shared across all streams because the underlying connection is shared.
connWriteLock *sync.Mutex
id byte
}
func (s *stream) Read(p []byte) (n int, err error) {
return s.readPipe.Read(p)
}
// Write writes directly to the underlying WebSocket connection.
func (s *stream) Write(p []byte) (n int, err error) {
klog.V(4).Infof("Write() on stream %d", s.id)
defer klog.V(4).Infof("Write() done on stream %d", s.id)
s.connWriteLock.Lock()
defer s.connWriteLock.Unlock()
if s.conn == nil {
return 0, fmt.Errorf("write on closed stream %d", s.id)
}
err = s.conn.SetWriteDeadline(time.Now().Add(writeDeadline))
if err != nil {
klog.V(7).Infof("Websocket setting write deadline failed %v", err)
return 0, err
}
// Message writer buffers the message data, so we don't need to do that ourselves.
// Just write id and the data as two separate writes to avoid allocating an intermediate buffer.
w, err := s.conn.NextWriter(gwebsocket.BinaryMessage)
if err != nil {
return 0, err
}
defer func() {
if w != nil {
w.Close()
}
}()
_, err = w.Write([]byte{s.id})
if err != nil {
return 0, err
}
n, err = w.Write(p)
if err != nil {
return n, err
}
err = w.Close()
w = nil
return n, err
}
// Close half-closes the stream, indicating this side is finished with the stream.
func (s *stream) Close() error {
klog.V(4).Infof("Close() on stream %d", s.id)
defer klog.V(4).Infof("Close() done on stream %d", s.id)
s.connWriteLock.Lock()
defer s.connWriteLock.Unlock()
if s.conn == nil {
return fmt.Errorf("Close() on already closed stream %d", s.id)
}
// Communicate the CLOSE stream signal to the other websocket endpoint.
err := s.conn.WriteMessage(gwebsocket.BinaryMessage, []byte{remotecommand.StreamClose, s.id})
s.conn = nil
return err
}
func (s *stream) Reset() error {
klog.V(4).Infof("Reset() on stream %d", s.id)
defer klog.V(4).Infof("Reset() done on stream %d", s.id)
s.Close()
return s.writePipe.Close()
}
func (s *stream) Headers() http.Header {
return s.headers
}
func (s *stream) Identifier() uint32 {
return uint32(s.id)
}
// heartbeat encasulates data necessary for the websocket ping/pong heartbeat. This
// heartbeat works by setting a read deadline on the websocket connection, then
// pushing this deadline into the future for every successful heartbeat. If the
// heartbeat "pong" fails to respond within the deadline, then the "NextReader()" call
// inside the "readDemuxLoop" will return an i/o error prompting a connection close
// and cleanup.
type heartbeat struct {
conn *gwebsocket.Conn
// period defines how often a "ping" heartbeat message is sent to the other endpoint
period time.Duration
// closing the "closer" channel will clean up the heartbeat timers
closer chan struct{}
// optional data to send with "ping" message
message []byte
// optionally received data message with "pong" message, same as sent with ping
pongMessage []byte
}
// newHeartbeat creates heartbeat structure encapsulating fields necessary to
// run the websocket connection ping/pong mechanism and sets up handlers on
// the websocket connection.
func newHeartbeat(conn *gwebsocket.Conn, period time.Duration, deadline time.Duration) *heartbeat {
h := &heartbeat{
conn: conn,
period: period,
closer: make(chan struct{}),
}
// Set up handler for receiving returned "pong" message from other endpoint
// by pushing the read deadline into the future. The "msg" received could
// be empty.
h.conn.SetPongHandler(func(msg string) error {
// Push the read deadline into the future.
klog.V(8).Infof("Pong message received (%s)--resetting read deadline", msg)
err := h.conn.SetReadDeadline(time.Now().Add(deadline))
if err != nil {
klog.Errorf("Websocket setting read deadline failed %v", err)
return err
}
if len(msg) > 0 {
h.pongMessage = []byte(msg)
}
return nil
})
// Set up handler to cleanup timers when this endpoint receives "Close" message.
closeHandler := h.conn.CloseHandler()
h.conn.SetCloseHandler(func(code int, text string) error {
close(h.closer)
return closeHandler(code, text)
})
return h
}
// setMessage is optional data sent with "ping" heartbeat. According to the websocket RFC
// this data sent with "ping" message should be returned in "pong" message.
func (h *heartbeat) setMessage(msg string) {
h.message = []byte(msg)
}
// start the heartbeat by setting up necesssary handlers and looping by sending "ping"
// message every "period" until the "closer" channel is closed.
func (h *heartbeat) start() {
// Loop to continually send "ping" message through websocket connection every "period".
t := time.NewTicker(h.period)
defer t.Stop()
for {
select {
case <-h.closer:
klog.V(8).Infof("closed channel--returning")
return
case <-t.C:
// "WriteControl" does not need to be protected by a mutex. According to
// gorilla/websockets library docs: "The Close and WriteControl methods can
// be called concurrently with all other methods."
if err := h.conn.WriteControl(gwebsocket.PingMessage, h.message, time.Now().Add(pingReadDeadline)); err == nil {
klog.V(8).Infof("Websocket Ping succeeeded")
} else {
klog.Errorf("Websocket Ping failed: %v", err)
if errors.Is(err, gwebsocket.ErrCloseSent) {
// we continue because c.conn.CloseChan will manage closing the connection already
continue
} else if e, ok := err.(net.Error); ok && e.Timeout() {
// Continue, in case this is a transient failure.
// c.conn.CloseChan above will tell us when the connection is
// actually closed.
// If Temporary function hadn't been deprecated, we would have used it.
// But most of temporary errors are timeout errors anyway.
continue
}
return
}
}
}
}
|