1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*
Copyright 2022 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package prometheusextension
import (
"fmt"
"math"
"math/rand"
"sort"
"testing"
"github.com/prometheus/client_golang/prometheus"
dto "github.com/prometheus/client_model/go"
)
// Float64Slice is a slice of float64 that sorts by magnitude
type Float64Slice []float64
func (fs Float64Slice) Len() int { return len(fs) }
func (fs Float64Slice) Less(i, j int) bool { return math.Abs(fs[i]) < math.Abs(fs[j]) }
func (fs Float64Slice) Swap(i, j int) { fs[i], fs[j] = fs[j], fs[i] }
// weightedHistogramSpecFunc returns a WeightedHistogram and the upper bounds
// to expect it to have.
// Every invocation of the same function returns the same histogram.
type weightedHistogramSpecFunc func() (wh WeightedObserver, upperBounds []float64)
// exerciseWeightedHistograms exercises a given collection of WeightedHistograms.
// Each histogram is given by a function that returns it, so that we can test
// that the Vec functions return the same result for the same input.
// For each histogram, with N upper bounds, the exercise provides two 2N+1 values:
// the upper bounds and values halfway between them (extended below the bottom and above
// the top). For the Jth value, there are J*m1 calls to ObserveWithWeight with m1
// chosen so that m1 * sum[1 <= J <= 2N+1] J is large enough to trigger several
// considerations of spilling from sumHot to sumCold.
// The ObserveWithWeight calls to the various histograms are interleaved to check
// that there is no interference between them.
func exerciseWeightedHistograms(t *testing.T, whSpecs ...weightedHistogramSpecFunc) {
var whos []weightedHistogramObs
expectations := []whExerciseExpectation{}
// Create expectations and specs of calls ot ObserveWithWeight
for whIdx, whSpec := range whSpecs {
wh, upperBounds := whSpec()
numUBs := len(upperBounds)
numWhos := numUBs*2 + 1
multSum := (numWhos * (numWhos + 1)) / 2
m1 := (-10 * initialHotCount) / multSum
terms := Float64Slice{}
ee := whExerciseExpectation{wh: wh,
upperBounds: upperBounds,
buckets: make([]uint64, numUBs),
}
addWHOs := func(val float64, weight uint64, mult, idx int) {
multipliedWeight := weight * uint64(mult)
terms = append(terms, val*float64(multipliedWeight))
t.Logf("For WH %d, adding obs val=%v, weight=%v, mult=%d, idx=%d", whIdx, val, weight, mult, idx)
for i := 0; i < mult; i++ {
whos = append(whos, weightedHistogramObs{whSpec, val, weight})
}
for j := idx; j < numUBs; j++ {
ee.buckets[j] += multipliedWeight
}
ee.count += multipliedWeight
}
for idx, ub := range upperBounds {
var val float64
if idx > 0 {
val = (upperBounds[idx-1] + ub) / 2
} else if numUBs > 1 {
val = (3*ub - upperBounds[1]) / 2
} else {
val = ub - 1
}
addWHOs(val, (1 << rand.Intn(40)), (2*idx+1)*m1, idx)
addWHOs(ub, (1 << rand.Intn(40)), (2*idx+2)*m1, idx)
}
val := upperBounds[numUBs-1] + 1
if numUBs > 1 {
val = (3*upperBounds[numUBs-1] - upperBounds[numUBs-2]) / 2
}
addWHOs(val, 1+uint64(rand.Intn(1000000)), (2*numUBs+1)*m1, numUBs)
sort.Sort(terms)
for _, term := range terms {
ee.sum += term
}
t.Logf("At idx=%v, adding expectation of buckets=%#+v, upperBounds=%#+v, sum=%v, count=%v", whIdx, ee.buckets, ee.upperBounds, ee.sum, ee.count)
expectations = append(expectations, ee)
}
// Do the planned calls on ObserveWithWeight, in randomized order
for len(whos) > 0 {
var wi weightedHistogramObs
whos, wi = whosPick(whos)
wh, _ := wi.whSpec()
wh.ObserveWithWeight(wi.val, wi.weight)
// t.Logf("ObserveWithWeight(%v, %v) => %#+v", wi.val, wi.weight, wh)
}
// Check expectations
for idx, ee := range expectations {
wh := ee.wh
whAsMetric := wh.(prometheus.Metric)
var metric dto.Metric
whAsMetric.Write(&metric)
actualHist := metric.GetHistogram()
if actualHist == nil {
t.Errorf("At idx=%d, Write produced nil Histogram", idx)
}
actualCount := actualHist.GetSampleCount()
if actualCount != ee.count {
t.Errorf("At idx=%d, expected count %v but got %v", idx, ee.count, actualCount)
}
actualBuckets := actualHist.GetBucket()
if len(ee.buckets) != len(actualBuckets) {
t.Errorf("At idx=%d, expected %v buckets but got %v", idx, len(ee.buckets), len(actualBuckets))
}
for j := 0; j < len(ee.buckets) && j < len(actualBuckets); j++ {
actualUB := actualBuckets[j].GetUpperBound()
actualCount := actualBuckets[j].GetCumulativeCount()
if ee.upperBounds[j] != actualUB {
t.Errorf("At idx=%d, bucket %d, expected upper bound %v but got %v, err=%v", idx, j, ee.upperBounds[j], actualUB, actualUB-ee.upperBounds[j])
}
if ee.buckets[j] != actualCount {
t.Errorf("At idx=%d, bucket %d expected count %d but got %d", idx, j, ee.buckets[j], actualCount)
}
}
actualSum := actualHist.GetSampleSum()
num := math.Abs(actualSum - ee.sum)
den := math.Max(math.Abs(actualSum), math.Abs(ee.sum))
relErr := num / den
// Issue 120112 reports relative errors as high as 9.55994394104272e-14
if relErr > 1e-13 {
t.Errorf("At idx=%d, expected sum %v but got %v, err=%v, relativeErr=%v", idx, ee.sum, actualSum, actualSum-ee.sum, relErr)
}
}
}
// weightedHistogramObs prescribes a call on WeightedHistogram::ObserveWithWeight
type weightedHistogramObs struct {
whSpec weightedHistogramSpecFunc
val float64
weight uint64
}
// whExerciseExpectation is the expected result from exercising a WeightedHistogram
type whExerciseExpectation struct {
wh WeightedObserver
upperBounds []float64
buckets []uint64
sum float64
count uint64
}
func whosPick(whos []weightedHistogramObs) ([]weightedHistogramObs, weightedHistogramObs) {
n := len(whos)
if n < 2 {
return whos[:0], whos[0]
}
idx := rand.Intn(n)
ans := whos[idx]
whos[idx] = whos[n-1]
return whos[:n-1], ans
}
func TestOneWeightedHistogram(t *testing.T) {
// First, some literal test cases
for _, testCase := range []struct {
name string
upperBounds []float64
}{
{"one bucket", []float64{0.07}},
{"two buckets", []float64{0.07, 0.13}},
{"three buckets", []float64{0.07, 0.13, 1e6}},
} {
t.Run(testCase.name, func(t *testing.T) {
wh, err := NewWeightedHistogram(WeightedHistogramOpts{
Namespace: "testns",
Subsystem: "testsubsys",
Name: "testhist",
Help: "Me",
Buckets: testCase.upperBounds,
})
if err != nil {
t.Error(err)
}
exerciseWeightedHistograms(t, func() (WeightedObserver, []float64) { return wh, testCase.upperBounds })
})
}
// Now, some randomized test cases
for i := 0; i < 10; i++ {
name := fmt.Sprintf("random_case_%d", i)
t.Run(name, func(t *testing.T) {
nBounds := rand.Intn(10) + 1
ubs := []float64{}
var bound float64
for j := 0; j < nBounds; j++ {
bound += rand.Float64()
ubs = append(ubs, bound)
}
wh, err := NewWeightedHistogram(WeightedHistogramOpts{
Namespace: "testns",
Subsystem: "testsubsys",
Name: name,
Help: "Me",
Buckets: ubs,
ConstLabels: prometheus.Labels{"k0": "v0"},
})
if err != nil {
t.Error(err)
}
exerciseWeightedHistograms(t, func() (WeightedObserver, []float64) { return wh, ubs })
})
}
}
func TestWeightedHistogramVec(t *testing.T) {
ubs1 := []float64{0.07, 1.3, 1e6}
vec1 := NewWeightedHistogramVec(WeightedHistogramOpts{
Namespace: "testns",
Subsystem: "testsubsys",
Name: "vec1",
Help: "Me",
Buckets: ubs1,
ConstLabels: prometheus.Labels{"k0": "v0"},
}, "k1", "k2")
gen1 := func(lvs ...string) func() (WeightedObserver, []float64) {
return func() (WeightedObserver, []float64) { return vec1.WithLabelValues(lvs...), ubs1 }
}
ubs2 := []float64{-0.03, 0.71, 1e9}
vec2 := NewWeightedHistogramVec(WeightedHistogramOpts{
Namespace: "testns",
Subsystem: "testsubsys",
Name: "vec2",
Help: "Me",
Buckets: ubs2,
ConstLabels: prometheus.Labels{"j0": "u0"},
}, "j1", "j2")
gen2 := func(lvs ...string) func() (WeightedObserver, []float64) {
varLabels := prometheus.Labels{}
varLabels["j1"] = lvs[0]
varLabels["j2"] = lvs[1]
return func() (WeightedObserver, []float64) { return vec2.With(varLabels), ubs2 }
}
exerciseWeightedHistograms(t,
gen1("v11", "v21"),
gen1("v12", "v21"),
gen1("v12", "v22"),
gen2("a", "b"),
gen2("a", "c"),
gen2("b", "c"),
)
}
func BenchmarkWeightedHistogram(b *testing.B) {
b.StopTimer()
wh, err := NewWeightedHistogram(WeightedHistogramOpts{
Namespace: "testns",
Subsystem: "testsubsys",
Name: "testhist",
Help: "Me",
Buckets: []float64{1, 2, 4, 8, 16},
})
if err != nil {
b.Error(err)
}
var x int
b.StartTimer()
for i := 0; i < b.N; i++ {
wh.ObserveWithWeight(float64(x), uint64(i)%32+1)
x = (x + i) % 20
}
}
func BenchmarkHistogram(b *testing.B) {
b.StopTimer()
hist := prometheus.NewHistogram(prometheus.HistogramOpts{
Namespace: "testns",
Subsystem: "testsubsys",
Name: "testhist",
Help: "Me",
Buckets: []float64{1, 2, 4, 8, 16},
})
var x int
b.StartTimer()
for i := 0; i < b.N; i++ {
hist.Observe(float64(x))
x = (x + i) % 20
}
}
|