1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package typed
import (
"math"
"sigs.k8s.io/structured-merge-diff/v4/fieldpath"
"sigs.k8s.io/structured-merge-diff/v4/schema"
"sigs.k8s.io/structured-merge-diff/v4/value"
)
type mergingWalker struct {
lhs value.Value
rhs value.Value
schema *schema.Schema
typeRef schema.TypeRef
// Current path that we are merging
path fieldpath.Path
// How to merge. Called after schema validation for all leaf fields.
rule mergeRule
// If set, called after non-leaf items have been merged. (`out` is
// probably already set.)
postItemHook mergeRule
// output of the merge operation (nil if none)
out *interface{}
// internal housekeeping--don't set when constructing.
inLeaf bool // Set to true if we're in a "big leaf"--atomic map/list
// Allocate only as many walkers as needed for the depth by storing them here.
spareWalkers *[]*mergingWalker
allocator value.Allocator
}
// merge rules examine w.lhs and w.rhs (up to one of which may be nil) and
// optionally set w.out. If lhs and rhs are both set, they will be of
// comparable type.
type mergeRule func(w *mergingWalker)
var (
ruleKeepRHS = mergeRule(func(w *mergingWalker) {
if w.rhs != nil {
v := w.rhs.Unstructured()
w.out = &v
} else if w.lhs != nil {
v := w.lhs.Unstructured()
w.out = &v
}
})
)
// merge sets w.out.
func (w *mergingWalker) merge(prefixFn func() string) (errs ValidationErrors) {
if w.lhs == nil && w.rhs == nil {
// check this condidition here instead of everywhere below.
return errorf("at least one of lhs and rhs must be provided")
}
a, ok := w.schema.Resolve(w.typeRef)
if !ok {
return errorf("schema error: no type found matching: %v", *w.typeRef.NamedType)
}
alhs := deduceAtom(a, w.lhs)
arhs := deduceAtom(a, w.rhs)
if alhs.Equals(&arhs) {
errs = append(errs, handleAtom(arhs, w.typeRef, w)...)
} else {
w2 := *w
errs = append(errs, handleAtom(alhs, w.typeRef, &w2)...)
errs = append(errs, handleAtom(arhs, w.typeRef, w)...)
}
if !w.inLeaf && w.postItemHook != nil {
w.postItemHook(w)
}
return errs.WithLazyPrefix(prefixFn)
}
// doLeaf should be called on leaves before descending into children, if there
// will be a descent. It modifies w.inLeaf.
func (w *mergingWalker) doLeaf() {
if w.inLeaf {
// We're in a "big leaf", an atomic map or list. Ignore
// subsequent leaves.
return
}
w.inLeaf = true
// We don't recurse into leaf fields for merging.
w.rule(w)
}
func (w *mergingWalker) doScalar(t *schema.Scalar) (errs ValidationErrors) {
errs = append(errs, validateScalar(t, w.lhs, "lhs: ")...)
errs = append(errs, validateScalar(t, w.rhs, "rhs: ")...)
if len(errs) > 0 {
return errs
}
// All scalars are leaf fields.
w.doLeaf()
return nil
}
func (w *mergingWalker) prepareDescent(pe fieldpath.PathElement, tr schema.TypeRef) *mergingWalker {
if w.spareWalkers == nil {
// first descent.
w.spareWalkers = &[]*mergingWalker{}
}
var w2 *mergingWalker
if n := len(*w.spareWalkers); n > 0 {
w2, *w.spareWalkers = (*w.spareWalkers)[n-1], (*w.spareWalkers)[:n-1]
} else {
w2 = &mergingWalker{}
}
*w2 = *w
w2.typeRef = tr
w2.path = append(w2.path, pe)
w2.lhs = nil
w2.rhs = nil
w2.out = nil
return w2
}
func (w *mergingWalker) finishDescent(w2 *mergingWalker) {
// if the descent caused a realloc, ensure that we reuse the buffer
// for the next sibling.
w.path = w2.path[:len(w2.path)-1]
*w.spareWalkers = append(*w.spareWalkers, w2)
}
func (w *mergingWalker) derefMap(prefix string, v value.Value) (value.Map, ValidationErrors) {
if v == nil {
return nil, nil
}
m, err := mapValue(w.allocator, v)
if err != nil {
return nil, errorf("%v: %v", prefix, err)
}
return m, nil
}
func (w *mergingWalker) visitListItems(t *schema.List, lhs, rhs value.List) (errs ValidationErrors) {
rLen := 0
if rhs != nil {
rLen = rhs.Length()
}
lLen := 0
if lhs != nil {
lLen = lhs.Length()
}
out := make([]interface{}, 0, int(math.Max(float64(rLen), float64(lLen))))
// TODO: ordering is totally wrong.
// TODO: might as well make the map order work the same way.
// This is a cheap hack to at least make the output order stable.
rhsOrder := make([]fieldpath.PathElement, 0, rLen)
// First, collect all RHS children.
observedRHS := fieldpath.MakePathElementValueMap(rLen)
if rhs != nil {
for i := 0; i < rhs.Length(); i++ {
child := rhs.At(i)
pe, err := listItemToPathElement(w.allocator, w.schema, t, i, child)
if err != nil {
errs = append(errs, errorf("rhs: element %v: %v", i, err.Error())...)
// If we can't construct the path element, we can't
// even report errors deeper in the schema, so bail on
// this element.
continue
}
if _, ok := observedRHS.Get(pe); ok {
errs = append(errs, errorf("rhs: duplicate entries for key %v", pe.String())...)
}
observedRHS.Insert(pe, child)
rhsOrder = append(rhsOrder, pe)
}
}
// Then merge with LHS children.
observedLHS := fieldpath.MakePathElementSet(lLen)
if lhs != nil {
for i := 0; i < lhs.Length(); i++ {
child := lhs.At(i)
pe, err := listItemToPathElement(w.allocator, w.schema, t, i, child)
if err != nil {
errs = append(errs, errorf("lhs: element %v: %v", i, err.Error())...)
// If we can't construct the path element, we can't
// even report errors deeper in the schema, so bail on
// this element.
continue
}
if observedLHS.Has(pe) {
errs = append(errs, errorf("lhs: duplicate entries for key %v", pe.String())...)
continue
}
observedLHS.Insert(pe)
w2 := w.prepareDescent(pe, t.ElementType)
w2.lhs = value.Value(child)
if rchild, ok := observedRHS.Get(pe); ok {
w2.rhs = rchild
}
errs = append(errs, w2.merge(pe.String)...)
if w2.out != nil {
out = append(out, *w2.out)
}
w.finishDescent(w2)
}
}
for _, pe := range rhsOrder {
if observedLHS.Has(pe) {
continue
}
value, _ := observedRHS.Get(pe)
w2 := w.prepareDescent(pe, t.ElementType)
w2.rhs = value
errs = append(errs, w2.merge(pe.String)...)
if w2.out != nil {
out = append(out, *w2.out)
}
w.finishDescent(w2)
}
if len(out) > 0 {
i := interface{}(out)
w.out = &i
}
return errs
}
func (w *mergingWalker) derefList(prefix string, v value.Value) (value.List, ValidationErrors) {
if v == nil {
return nil, nil
}
l, err := listValue(w.allocator, v)
if err != nil {
return nil, errorf("%v: %v", prefix, err)
}
return l, nil
}
func (w *mergingWalker) doList(t *schema.List) (errs ValidationErrors) {
lhs, _ := w.derefList("lhs: ", w.lhs)
if lhs != nil {
defer w.allocator.Free(lhs)
}
rhs, _ := w.derefList("rhs: ", w.rhs)
if rhs != nil {
defer w.allocator.Free(rhs)
}
// If both lhs and rhs are empty/null, treat it as a
// leaf: this helps preserve the empty/null
// distinction.
emptyPromoteToLeaf := (lhs == nil || lhs.Length() == 0) && (rhs == nil || rhs.Length() == 0)
if t.ElementRelationship == schema.Atomic || emptyPromoteToLeaf {
w.doLeaf()
return nil
}
if lhs == nil && rhs == nil {
return nil
}
errs = w.visitListItems(t, lhs, rhs)
return errs
}
func (w *mergingWalker) visitMapItem(t *schema.Map, out map[string]interface{}, key string, lhs, rhs value.Value) (errs ValidationErrors) {
fieldType := t.ElementType
if sf, ok := t.FindField(key); ok {
fieldType = sf.Type
}
pe := fieldpath.PathElement{FieldName: &key}
w2 := w.prepareDescent(pe, fieldType)
w2.lhs = lhs
w2.rhs = rhs
errs = append(errs, w2.merge(pe.String)...)
if w2.out != nil {
out[key] = *w2.out
}
w.finishDescent(w2)
return errs
}
func (w *mergingWalker) visitMapItems(t *schema.Map, lhs, rhs value.Map) (errs ValidationErrors) {
out := map[string]interface{}{}
value.MapZipUsing(w.allocator, lhs, rhs, value.Unordered, func(key string, lhsValue, rhsValue value.Value) bool {
errs = append(errs, w.visitMapItem(t, out, key, lhsValue, rhsValue)...)
return true
})
if len(out) > 0 {
i := interface{}(out)
w.out = &i
}
return errs
}
func (w *mergingWalker) doMap(t *schema.Map) (errs ValidationErrors) {
lhs, _ := w.derefMap("lhs: ", w.lhs)
if lhs != nil {
defer w.allocator.Free(lhs)
}
rhs, _ := w.derefMap("rhs: ", w.rhs)
if rhs != nil {
defer w.allocator.Free(rhs)
}
// If both lhs and rhs are empty/null, treat it as a
// leaf: this helps preserve the empty/null
// distinction.
emptyPromoteToLeaf := (lhs == nil || lhs.Empty()) && (rhs == nil || rhs.Empty())
if t.ElementRelationship == schema.Atomic || emptyPromoteToLeaf {
w.doLeaf()
return nil
}
if lhs == nil && rhs == nil {
return nil
}
errs = append(errs, w.visitMapItems(t, lhs, rhs)...)
return errs
}
|