1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
/*
Copyright 2018 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package fieldpath
import (
"sort"
"strings"
"sigs.k8s.io/structured-merge-diff/v4/schema"
)
// Set identifies a set of fields.
type Set struct {
// Members lists fields that are part of the set.
// TODO: will be serialized as a list of path elements.
Members PathElementSet
// Children lists child fields which themselves have children that are
// members of the set. Appearance in this list does not imply membership.
// Note: this is a tree, not an arbitrary graph.
Children SetNodeMap
}
// NewSet makes a set from a list of paths.
func NewSet(paths ...Path) *Set {
s := &Set{}
for _, p := range paths {
s.Insert(p)
}
return s
}
// Insert adds the field identified by `p` to the set. Important: parent fields
// are NOT added to the set; if that is desired, they must be added separately.
func (s *Set) Insert(p Path) {
if len(p) == 0 {
// Zero-length path identifies the entire object; we don't
// track top-level ownership.
return
}
for {
if len(p) == 1 {
s.Members.Insert(p[0])
return
}
s = s.Children.Descend(p[0])
p = p[1:]
}
}
// Union returns a Set containing elements which appear in either s or s2.
func (s *Set) Union(s2 *Set) *Set {
return &Set{
Members: *s.Members.Union(&s2.Members),
Children: *s.Children.Union(&s2.Children),
}
}
// Intersection returns a Set containing leaf elements which appear in both s
// and s2. Intersection can be constructed from Union and Difference operations
// (example in the tests) but it's much faster to do it in one pass.
func (s *Set) Intersection(s2 *Set) *Set {
return &Set{
Members: *s.Members.Intersection(&s2.Members),
Children: *s.Children.Intersection(&s2.Children),
}
}
// Difference returns a Set containing elements which:
// * appear in s
// * do not appear in s2
//
// In other words, for leaf fields, this acts like a regular set difference
// operation. When non leaf fields are compared with leaf fields ("parents"
// which contain "children"), the effect is:
// * parent - child = parent
// * child - parent = {empty set}
func (s *Set) Difference(s2 *Set) *Set {
return &Set{
Members: *s.Members.Difference(&s2.Members),
Children: *s.Children.Difference(s2),
}
}
// RecursiveDifference returns a Set containing elements which:
// * appear in s
// * do not appear in s2
//
// Compared to a regular difference,
// this removes every field **and its children** from s that is contained in s2.
//
// For example, with s containing `a.b.c` and s2 containing `a.b`,
// a RecursiveDifference will result in `a`, as the entire node `a.b` gets removed.
func (s *Set) RecursiveDifference(s2 *Set) *Set {
return &Set{
Members: *s.Members.Difference(&s2.Members),
Children: *s.Children.RecursiveDifference(s2),
}
}
// EnsureNamedFieldsAreMembers returns a Set that contains all the
// fields in s, as well as all the named fields that are typically not
// included. For example, a set made of "a.b.c" will end-up also owning
// "a" if it's a named fields but not "a.b" if it's a map.
func (s *Set) EnsureNamedFieldsAreMembers(sc *schema.Schema, tr schema.TypeRef) *Set {
members := PathElementSet{
members: make(sortedPathElements, 0, s.Members.Size()+len(s.Children.members)),
}
atom, _ := sc.Resolve(tr)
members.members = append(members.members, s.Members.members...)
for _, node := range s.Children.members {
// Only insert named fields.
if node.pathElement.FieldName != nil && atom.Map != nil {
if _, has := atom.Map.FindField(*node.pathElement.FieldName); has {
members.Insert(node.pathElement)
}
}
}
return &Set{
Members: members,
Children: *s.Children.EnsureNamedFieldsAreMembers(sc, tr),
}
}
// Size returns the number of members of the set.
func (s *Set) Size() int {
return s.Members.Size() + s.Children.Size()
}
// Empty returns true if there are no members of the set. It is a separate
// function from Size since it's common to check whether size > 0, and
// potentially much faster to return as soon as a single element is found.
func (s *Set) Empty() bool {
if s.Members.Size() > 0 {
return false
}
return s.Children.Empty()
}
// Has returns true if the field referenced by `p` is a member of the set.
func (s *Set) Has(p Path) bool {
if len(p) == 0 {
// No one owns "the entire object"
return false
}
for {
if len(p) == 1 {
return s.Members.Has(p[0])
}
var ok bool
s, ok = s.Children.Get(p[0])
if !ok {
return false
}
p = p[1:]
}
}
// Equals returns true if s and s2 have exactly the same members.
func (s *Set) Equals(s2 *Set) bool {
return s.Members.Equals(&s2.Members) && s.Children.Equals(&s2.Children)
}
// String returns the set one element per line.
func (s *Set) String() string {
elements := []string{}
s.Iterate(func(p Path) {
elements = append(elements, p.String())
})
return strings.Join(elements, "\n")
}
// Iterate calls f once for each field that is a member of the set (preorder
// DFS). The path passed to f will be reused so make a copy if you wish to keep
// it.
func (s *Set) Iterate(f func(Path)) {
s.iteratePrefix(Path{}, f)
}
func (s *Set) iteratePrefix(prefix Path, f func(Path)) {
s.Members.Iterate(func(pe PathElement) { f(append(prefix, pe)) })
s.Children.iteratePrefix(prefix, f)
}
// WithPrefix returns the subset of paths which begin with the given prefix,
// with the prefix not included.
func (s *Set) WithPrefix(pe PathElement) *Set {
subset, ok := s.Children.Get(pe)
if !ok {
return NewSet()
}
return subset
}
// Leaves returns a set containing only the leaf paths
// of a set.
func (s *Set) Leaves() *Set {
leaves := PathElementSet{}
im := 0
ic := 0
// any members that are not also children are leaves
outer:
for im < len(s.Members.members) {
member := s.Members.members[im]
for ic < len(s.Children.members) {
d := member.Compare(s.Children.members[ic].pathElement)
if d == 0 {
ic++
im++
continue outer
} else if d < 0 {
break
} else /* if d > 0 */ {
ic++
}
}
leaves.members = append(leaves.members, member)
im++
}
return &Set{
Members: leaves,
Children: *s.Children.Leaves(),
}
}
// setNode is a pair of PathElement / Set, for the purpose of expressing
// nested set membership.
type setNode struct {
pathElement PathElement
set *Set
}
// SetNodeMap is a map of PathElement to subset.
type SetNodeMap struct {
members sortedSetNode
}
type sortedSetNode []setNode
// Implement the sort interface; this would permit bulk creation, which would
// be faster than doing it one at a time via Insert.
func (s sortedSetNode) Len() int { return len(s) }
func (s sortedSetNode) Less(i, j int) bool { return s[i].pathElement.Less(s[j].pathElement) }
func (s sortedSetNode) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// Descend adds pe to the set if necessary, returning the associated subset.
func (s *SetNodeMap) Descend(pe PathElement) *Set {
loc := sort.Search(len(s.members), func(i int) bool {
return !s.members[i].pathElement.Less(pe)
})
if loc == len(s.members) {
s.members = append(s.members, setNode{pathElement: pe, set: &Set{}})
return s.members[loc].set
}
if s.members[loc].pathElement.Equals(pe) {
return s.members[loc].set
}
s.members = append(s.members, setNode{})
copy(s.members[loc+1:], s.members[loc:])
s.members[loc] = setNode{pathElement: pe, set: &Set{}}
return s.members[loc].set
}
// Size returns the sum of the number of members of all subsets.
func (s *SetNodeMap) Size() int {
count := 0
for _, v := range s.members {
count += v.set.Size()
}
return count
}
// Empty returns false if there's at least one member in some child set.
func (s *SetNodeMap) Empty() bool {
for _, n := range s.members {
if !n.set.Empty() {
return false
}
}
return true
}
// Get returns (the associated set, true) or (nil, false) if there is none.
func (s *SetNodeMap) Get(pe PathElement) (*Set, bool) {
loc := sort.Search(len(s.members), func(i int) bool {
return !s.members[i].pathElement.Less(pe)
})
if loc == len(s.members) {
return nil, false
}
if s.members[loc].pathElement.Equals(pe) {
return s.members[loc].set, true
}
return nil, false
}
// Equals returns true if s and s2 have the same structure (same nested
// child sets).
func (s *SetNodeMap) Equals(s2 *SetNodeMap) bool {
if len(s.members) != len(s2.members) {
return false
}
for i := range s.members {
if !s.members[i].pathElement.Equals(s2.members[i].pathElement) {
return false
}
if !s.members[i].set.Equals(s2.members[i].set) {
return false
}
}
return true
}
// Union returns a SetNodeMap with members that appear in either s or s2.
func (s *SetNodeMap) Union(s2 *SetNodeMap) *SetNodeMap {
out := &SetNodeMap{}
i, j := 0, 0
for i < len(s.members) && j < len(s2.members) {
if s.members[i].pathElement.Less(s2.members[j].pathElement) {
out.members = append(out.members, s.members[i])
i++
} else {
if !s2.members[j].pathElement.Less(s.members[i].pathElement) {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: s.members[i].set.Union(s2.members[j].set)})
i++
} else {
out.members = append(out.members, s2.members[j])
}
j++
}
}
if i < len(s.members) {
out.members = append(out.members, s.members[i:]...)
}
if j < len(s2.members) {
out.members = append(out.members, s2.members[j:]...)
}
return out
}
// Intersection returns a SetNodeMap with members that appear in both s and s2.
func (s *SetNodeMap) Intersection(s2 *SetNodeMap) *SetNodeMap {
out := &SetNodeMap{}
i, j := 0, 0
for i < len(s.members) && j < len(s2.members) {
if s.members[i].pathElement.Less(s2.members[j].pathElement) {
i++
} else {
if !s2.members[j].pathElement.Less(s.members[i].pathElement) {
res := s.members[i].set.Intersection(s2.members[j].set)
if !res.Empty() {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: res})
}
i++
}
j++
}
}
return out
}
// Difference returns a SetNodeMap with members that appear in s but not in s2.
func (s *SetNodeMap) Difference(s2 *Set) *SetNodeMap {
out := &SetNodeMap{}
i, j := 0, 0
for i < len(s.members) && j < len(s2.Children.members) {
if s.members[i].pathElement.Less(s2.Children.members[j].pathElement) {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: s.members[i].set})
i++
} else {
if !s2.Children.members[j].pathElement.Less(s.members[i].pathElement) {
diff := s.members[i].set.Difference(s2.Children.members[j].set)
// We aren't permitted to add nodes with no elements.
if !diff.Empty() {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: diff})
}
i++
}
j++
}
}
if i < len(s.members) {
out.members = append(out.members, s.members[i:]...)
}
return out
}
// RecursiveDifference returns a SetNodeMap with members that appear in s but not in s2.
//
// Compared to a regular difference,
// this removes every field **and its children** from s that is contained in s2.
//
// For example, with s containing `a.b.c` and s2 containing `a.b`,
// a RecursiveDifference will result in `a`, as the entire node `a.b` gets removed.
func (s *SetNodeMap) RecursiveDifference(s2 *Set) *SetNodeMap {
out := &SetNodeMap{}
i, j := 0, 0
for i < len(s.members) && j < len(s2.Children.members) {
if s.members[i].pathElement.Less(s2.Children.members[j].pathElement) {
if !s2.Members.Has(s.members[i].pathElement) {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: s.members[i].set})
}
i++
} else {
if !s2.Children.members[j].pathElement.Less(s.members[i].pathElement) {
if !s2.Members.Has(s.members[i].pathElement) {
diff := s.members[i].set.RecursiveDifference(s2.Children.members[j].set)
if !diff.Empty() {
out.members = append(out.members, setNode{pathElement: s.members[i].pathElement, set: diff})
}
}
i++
}
j++
}
}
if i < len(s.members) {
for _, c := range s.members[i:] {
if !s2.Members.Has(c.pathElement) {
out.members = append(out.members, c)
}
}
}
return out
}
// EnsureNamedFieldsAreMembers returns a set that contains all the named fields along with the leaves.
func (s *SetNodeMap) EnsureNamedFieldsAreMembers(sc *schema.Schema, tr schema.TypeRef) *SetNodeMap {
out := make(sortedSetNode, 0, s.Size())
atom, _ := sc.Resolve(tr)
for _, member := range s.members {
tr := schema.TypeRef{}
if member.pathElement.FieldName != nil && atom.Map != nil {
tr = atom.Map.ElementType
if sf, ok := atom.Map.FindField(*member.pathElement.FieldName); ok {
tr = sf.Type
}
} else if member.pathElement.Key != nil && atom.List != nil {
tr = atom.List.ElementType
}
out = append(out, setNode{
pathElement: member.pathElement,
set: member.set.EnsureNamedFieldsAreMembers(sc, tr),
})
}
return &SetNodeMap{
members: out,
}
}
// Iterate calls f for each PathElement in the set.
func (s *SetNodeMap) Iterate(f func(PathElement)) {
for _, n := range s.members {
f(n.pathElement)
}
}
func (s *SetNodeMap) iteratePrefix(prefix Path, f func(Path)) {
for _, n := range s.members {
pe := n.pathElement
n.set.iteratePrefix(append(prefix, pe), f)
}
}
// Leaves returns a SetNodeMap containing
// only setNodes with leaf PathElements.
func (s *SetNodeMap) Leaves() *SetNodeMap {
out := &SetNodeMap{}
out.members = make(sortedSetNode, len(s.members))
for i, n := range s.members {
out.members[i] = setNode{
pathElement: n.pathElement,
set: n.set.Leaves(),
}
}
return out
}
|