1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/*
Copyright 2023 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package set
import (
"sort"
)
// Empty is public since it is used by some internal API objects for conversions between external
// string arrays and internal sets, and conversion logic requires public types today.
type Empty struct{}
// Set is a set of the same type elements, implemented via map[ordered]struct{} for minimal memory consumption.
type Set[E ordered] map[E]Empty
// New creates a new set.
func New[E ordered](items ...E) Set[E] {
ss := Set[E]{}
ss.Insert(items...)
return ss
}
// KeySet creates a Set[E] from a keys of a map[E](? extends interface{}).
func KeySet[E ordered, A any](theMap map[E]A) Set[E] {
ret := Set[E]{}
for key := range theMap {
ret.Insert(key)
}
return ret
}
// Insert adds items to the set.
func (s Set[E]) Insert(items ...E) Set[E] {
for _, item := range items {
s[item] = Empty{}
}
return s
}
// Delete removes all items from the set.
func (s Set[E]) Delete(items ...E) Set[E] {
for _, item := range items {
delete(s, item)
}
return s
}
// Has returns true if and only if item is contained in the set.
func (s Set[E]) Has(item E) bool {
_, contained := s[item]
return contained
}
// HasAll returns true if and only if all items are contained in the set.
func (s Set[E]) HasAll(items ...E) bool {
for _, item := range items {
if !s.Has(item) {
return false
}
}
return true
}
// HasAny returns true if any items are contained in the set.
func (s Set[E]) HasAny(items ...E) bool {
for _, item := range items {
if s.Has(item) {
return true
}
}
return false
}
// Union returns a new set which includes items in either s1 or s2.
// For example:
// s1 = {a1, a2}
// s2 = {a3, a4}
// s1.Union(s2) = {a1, a2, a3, a4}
// s2.Union(s1) = {a1, a2, a3, a4}
func (s Set[E]) Union(s2 Set[E]) Set[E] {
result := Set[E]{}
result.Insert(s.UnsortedList()...)
result.Insert(s2.UnsortedList()...)
return result
}
// Len returns the number of elements in the set.
func (s Set[E]) Len() int {
return len(s)
}
// Intersection returns a new set which includes the item in BOTH s1 and s2
// For example:
// s1 = {a1, a2}
// s2 = {a2, a3}
// s1.Intersection(s2) = {a2}
func (s Set[E]) Intersection(s2 Set[E]) Set[E] {
var walk, other Set[E]
result := Set[E]{}
if s.Len() < s2.Len() {
walk = s
other = s2
} else {
walk = s2
other = s
}
for key := range walk {
if other.Has(key) {
result.Insert(key)
}
}
return result
}
// IsSuperset returns true if and only if s1 is a superset of s2.
func (s Set[E]) IsSuperset(s2 Set[E]) bool {
for item := range s2 {
if !s.Has(item) {
return false
}
}
return true
}
// Difference returns a set of objects that are not in s2
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.Difference(s2) = {a3}
// s2.Difference(s1) = {a4, a5}
func (s Set[E]) Difference(s2 Set[E]) Set[E] {
result := Set[E]{}
for key := range s {
if !s2.Has(key) {
result.Insert(key)
}
}
return result
}
// Equal returns true if and only if s1 is equal (as a set) to s2.
// Two sets are equal if their membership is identical.
func (s Set[E]) Equal(s2 Set[E]) bool {
return s.Len() == s2.Len() && s.IsSuperset(s2)
}
type sortableSlice[E ordered] []E
func (s sortableSlice[E]) Len() int {
return len(s)
}
func (s sortableSlice[E]) Less(i, j int) bool { return s[i] < s[j] }
func (s sortableSlice[E]) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// SortedList returns the contents as a sorted slice.
func (s Set[E]) SortedList() []E {
res := make(sortableSlice[E], 0, s.Len())
for key := range s {
res = append(res, key)
}
sort.Sort(res)
return res
}
// UnsortedList returns the slice with contents in random order.
func (s Set[E]) UnsortedList() []E {
res := make([]E, 0, len(s))
for key := range s {
res = append(res, key)
}
return res
}
// PopAny returns a single element from the set.
func (s Set[E]) PopAny() (E, bool) {
for key := range s {
s.Delete(key)
return key, true
}
var zeroValue E
return zeroValue, false
}
// Clone returns a new set which is a copy of the current set.
func (s Set[T]) Clone() Set[T] {
result := make(Set[T], len(s))
for key := range s {
result.Insert(key)
}
return result
}
// SymmetricDifference returns a set of elements which are in either of the sets, but not in their intersection.
// For example:
// s1 = {a1, a2, a3}
// s2 = {a1, a2, a4, a5}
// s1.SymmetricDifference(s2) = {a3, a4, a5}
// s2.SymmetricDifference(s1) = {a3, a4, a5}
func (s Set[T]) SymmetricDifference(s2 Set[T]) Set[T] {
return s.Difference(s2).Union(s2.Difference(s))
}
|