1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
// Package blake3 implements the BLAKE3 cryptographic hash function.
package blake3 // import "lukechampine.com/blake3"
import (
"encoding/binary"
"errors"
"hash"
"io"
"math"
"math/bits"
"lukechampine.com/blake3/bao"
"lukechampine.com/blake3/guts"
)
// Hasher implements hash.Hash.
type Hasher struct {
key [8]uint32
flags uint32
size int // output size, for Sum
// log(n) set of Merkle subtree roots, at most one per height.
stack [64 - (guts.MaxSIMD + 10)][8]uint32 // 10 = log2(guts.ChunkSize)
counter uint64 // number of buffers hashed; also serves as a bit vector indicating which stack elems are occupied
buf [guts.MaxSIMD * guts.ChunkSize]byte
buflen int
}
func (h *Hasher) hasSubtreeAtHeight(i int) bool {
return h.counter&(1<<i) != 0
}
func (h *Hasher) pushSubtree(cv [8]uint32) {
// seek to first open stack slot, merging subtrees as we go
i := 0
for h.hasSubtreeAtHeight(i) {
cv = guts.ChainingValue(guts.ParentNode(h.stack[i], cv, &h.key, h.flags))
i++
}
h.stack[i] = cv
h.counter++
}
// rootNode computes the root of the Merkle tree. It does not modify the
// stack.
func (h *Hasher) rootNode() guts.Node {
n := guts.CompressBuffer(&h.buf, h.buflen, &h.key, h.counter*guts.MaxSIMD, h.flags)
for i := bits.TrailingZeros64(h.counter); i < bits.Len64(h.counter); i++ {
if h.hasSubtreeAtHeight(i) {
n = guts.ParentNode(h.stack[i], guts.ChainingValue(n), &h.key, h.flags)
}
}
n.Flags |= guts.FlagRoot
return n
}
// Write implements hash.Hash.
func (h *Hasher) Write(p []byte) (int, error) {
lenp := len(p)
for len(p) > 0 {
if h.buflen == len(h.buf) {
n := guts.CompressBuffer(&h.buf, h.buflen, &h.key, h.counter*guts.MaxSIMD, h.flags)
h.pushSubtree(guts.ChainingValue(n))
h.buflen = 0
}
n := copy(h.buf[h.buflen:], p)
h.buflen += n
p = p[n:]
}
return lenp, nil
}
// Sum implements hash.Hash.
func (h *Hasher) Sum(b []byte) (sum []byte) {
// We need to append h.Size() bytes to b. Reuse b's capacity if possible;
// otherwise, allocate a new slice.
if total := len(b) + h.Size(); cap(b) >= total {
sum = b[:total]
} else {
sum = make([]byte, total)
copy(sum, b)
}
// Read into the appended portion of sum. Use a low-latency-low-throughput
// path for small digests (requiring a single compression), and a
// high-latency-high-throughput path for large digests.
if dst := sum[len(b):]; len(dst) <= 64 {
out := guts.WordsToBytes(guts.CompressNode(h.rootNode()))
copy(dst, out[:])
} else {
h.XOF().Read(dst)
}
return
}
// Reset implements hash.Hash.
func (h *Hasher) Reset() {
h.counter = 0
h.buflen = 0
}
// BlockSize implements hash.Hash.
func (h *Hasher) BlockSize() int { return 64 }
// Size implements hash.Hash.
func (h *Hasher) Size() int { return h.size }
// XOF returns an OutputReader initialized with the current hash state.
func (h *Hasher) XOF() *OutputReader {
return &OutputReader{
n: h.rootNode(),
}
}
func newHasher(key [8]uint32, flags uint32, size int) *Hasher {
return &Hasher{
key: key,
flags: flags,
size: size,
}
}
// New returns a Hasher for the specified digest size and key. If key is nil,
// the hash is unkeyed. Otherwise, len(key) must be 32.
func New(size int, key []byte) *Hasher {
if key == nil {
return newHasher(guts.IV, 0, size)
}
var keyWords [8]uint32
for i := range keyWords {
keyWords[i] = binary.LittleEndian.Uint32(key[i*4:])
}
return newHasher(keyWords, guts.FlagKeyedHash, size)
}
// Sum256 and Sum512 always use the same hasher state, so we can save some time
// when hashing small inputs by constructing the hasher ahead of time.
var defaultHasher = New(64, nil)
// Sum256 returns the unkeyed BLAKE3 hash of b, truncated to 256 bits.
func Sum256(b []byte) (out [32]byte) {
out512 := Sum512(b)
copy(out[:], out512[:])
return
}
// Sum512 returns the unkeyed BLAKE3 hash of b, truncated to 512 bits.
func Sum512(b []byte) (out [64]byte) {
var n guts.Node
if len(b) <= guts.BlockSize {
var block [64]byte
copy(block[:], b)
return guts.WordsToBytes(guts.CompressNode(guts.Node{
CV: guts.IV,
Block: guts.BytesToWords(block),
BlockLen: uint32(len(b)),
Flags: guts.FlagChunkStart | guts.FlagChunkEnd | guts.FlagRoot,
}))
} else if len(b) <= guts.ChunkSize {
n = guts.CompressChunk(b, &guts.IV, 0, 0)
n.Flags |= guts.FlagRoot
} else {
h := *defaultHasher
h.Write(b)
n = h.rootNode()
}
return guts.WordsToBytes(guts.CompressNode(n))
}
// DeriveKey derives a subkey from ctx and srcKey. ctx should be hardcoded,
// globally unique, and application-specific. A good format for ctx strings is:
//
// [application] [commit timestamp] [purpose]
//
// e.g.:
//
// example.com 2019-12-25 16:18:03 session tokens v1
//
// The purpose of these requirements is to ensure that an attacker cannot trick
// two different applications into using the same context string.
func DeriveKey(subKey []byte, ctx string, srcKey []byte) {
// construct the derivation Hasher
const derivationIVLen = 32
h := newHasher(guts.IV, guts.FlagDeriveKeyContext, 32)
h.Write([]byte(ctx))
derivationIV := h.Sum(make([]byte, 0, derivationIVLen))
var ivWords [8]uint32
for i := range ivWords {
ivWords[i] = binary.LittleEndian.Uint32(derivationIV[i*4:])
}
h = newHasher(ivWords, guts.FlagDeriveKeyMaterial, 0)
// derive the subKey
h.Write(srcKey)
h.XOF().Read(subKey)
}
// An OutputReader produces an seekable stream of 2^64 - 1 pseudorandom output
// bytes.
type OutputReader struct {
n guts.Node
buf [guts.MaxSIMD * guts.BlockSize]byte
off uint64
}
// Read implements io.Reader. Callers may assume that Read returns len(p), nil
// unless the read would extend beyond the end of the stream.
func (or *OutputReader) Read(p []byte) (int, error) {
if or.off == math.MaxUint64 {
return 0, io.EOF
} else if rem := math.MaxUint64 - or.off; uint64(len(p)) > rem {
p = p[:rem]
}
lenp := len(p)
for len(p) > 0 {
if or.off%(guts.MaxSIMD*guts.BlockSize) == 0 {
or.n.Counter = or.off / guts.BlockSize
guts.CompressBlocks(&or.buf, or.n)
}
n := copy(p, or.buf[or.off%(guts.MaxSIMD*guts.BlockSize):])
p = p[n:]
or.off += uint64(n)
}
return lenp, nil
}
// Seek implements io.Seeker.
func (or *OutputReader) Seek(offset int64, whence int) (int64, error) {
off := or.off
switch whence {
case io.SeekStart:
if offset < 0 {
return 0, errors.New("seek position cannot be negative")
}
off = uint64(offset)
case io.SeekCurrent:
if offset < 0 {
if uint64(-offset) > off {
return 0, errors.New("seek position cannot be negative")
}
off -= uint64(-offset)
} else {
off += uint64(offset)
}
case io.SeekEnd:
off = uint64(offset) - 1
default:
panic("invalid whence")
}
or.off = off
or.n.Counter = uint64(off) / guts.BlockSize
if or.off%(guts.MaxSIMD*guts.BlockSize) != 0 {
guts.CompressBlocks(&or.buf, or.n)
}
// NOTE: or.off >= 2^63 will result in a negative return value.
// Nothing we can do about this.
return int64(or.off), nil
}
// ensure that Hasher implements hash.Hash
var _ hash.Hash = (*Hasher)(nil)
// EncodedSize returns the size of a Bao encoding for the provided quantity
// of data.
//
// Deprecated: Use bao.EncodedSize instead.
func BaoEncodedSize(dataLen int, outboard bool) int {
return bao.EncodedSize(dataLen, 0, outboard)
}
// BaoEncode computes the intermediate BLAKE3 tree hashes of data and writes
// them to dst.
//
// Deprecated: Use bao.Encode instead.
func BaoEncode(dst io.WriterAt, data io.Reader, dataLen int64, outboard bool) ([32]byte, error) {
return bao.Encode(dst, data, dataLen, 0, outboard)
}
// BaoDecode reads content and tree data from the provided reader(s), and
// streams the verified content to dst.
//
// Deprecated: Use bao.Decode instead.
func BaoDecode(dst io.Writer, data, outboard io.Reader, root [32]byte) (bool, error) {
return bao.Decode(dst, data, outboard, 0, root)
}
// BaoEncodeBuf returns the Bao encoding and root (i.e. BLAKE3 hash) for data.
//
// Deprecated: Use bao.EncodeBuf instead.
func BaoEncodeBuf(data []byte, outboard bool) ([]byte, [32]byte) {
return bao.EncodeBuf(data, 0, outboard)
}
// BaoVerifyBuf verifies the Bao encoding and root (i.e. BLAKE3 hash) for data.
//
// Deprecated: Use bao.VerifyBuf instead.
func BaoVerifyBuf(data, outboard []byte, root [32]byte) bool {
return bao.VerifyBuf(data, outboard, 0, root)
}
|