1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
// Copied from https://cs.opensource.google/go/x/exp/+/24438e51023af3bfc1db8aed43c1342817e8cfcd:rand/rand.go
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package rand implements pseudo-random number generators.
//
// Random numbers are generated by a Source. Top-level functions, such as
// Float64 and Int, use a default shared Source that produces a deterministic
// sequence of values each time a program is run. Use the Seed function to
// initialize the default Source if different behavior is required for each run.
// The default Source, a LockedSource, is safe for concurrent use by multiple
// goroutines, but Sources created by NewSource are not. However, Sources are small
// and it is reasonable to have a separate Source for each goroutine, seeded
// differently, to avoid locking.
//
// For random numbers suitable for security-sensitive work, see the crypto/rand
// package.
package rand
import "sync"
// A Source represents a source of uniformly-distributed
// pseudo-random int64 values in the range [0, 1<<64).
type Source interface {
Uint64() uint64
Seed(seed uint64)
}
// NewSource returns a new pseudo-random Source seeded with the given value.
func NewSource(seed uint64) Source {
var rng PCGSource
rng.Seed(seed)
return &rng
}
// A Rand is a source of random numbers.
type Rand struct {
src Source
// readVal contains remainder of 64-bit integer used for bytes
// generation during most recent Read call.
// It is saved so next Read call can start where the previous
// one finished.
readVal uint64
// readPos indicates the number of low-order bytes of readVal
// that are still valid.
readPos int8
}
// New returns a new Rand that uses random values from src
// to generate other random values.
func New(src Source) *Rand {
return &Rand{src: src}
}
// Seed uses the provided seed value to initialize the generator to a deterministic state.
// Seed should not be called concurrently with any other Rand method.
func (r *Rand) Seed(seed uint64) {
if lk, ok := r.src.(*LockedSource); ok {
lk.seedPos(seed, &r.readPos)
return
}
r.src.Seed(seed)
r.readPos = 0
}
// Uint64 returns a pseudo-random 64-bit integer as a uint64.
func (r *Rand) Uint64() uint64 { return r.src.Uint64() }
// Int63 returns a non-negative pseudo-random 63-bit integer as an int64.
func (r *Rand) Int63() int64 { return int64(r.src.Uint64() &^ (1 << 63)) }
// Uint32 returns a pseudo-random 32-bit value as a uint32.
func (r *Rand) Uint32() uint32 { return uint32(r.Uint64() >> 32) }
// Int31 returns a non-negative pseudo-random 31-bit integer as an int32.
func (r *Rand) Int31() int32 { return int32(r.Uint64() >> 33) }
// Int returns a non-negative pseudo-random int.
func (r *Rand) Int() int {
u := uint(r.Uint64())
return int(u << 1 >> 1) // clear sign bit.
}
const maxUint64 = (1 << 64) - 1
// Uint64n returns, as a uint64, a pseudo-random number in [0,n).
// It is guaranteed more uniform than taking a Source value mod n
// for any n that is not a power of 2.
func (r *Rand) Uint64n(n uint64) uint64 {
if n&(n-1) == 0 { // n is power of two, can mask
if n == 0 {
panic("invalid argument to Uint64n")
}
return r.Uint64() & (n - 1)
}
// If n does not divide v, to avoid bias we must not use
// a v that is within maxUint64%n of the top of the range.
v := r.Uint64()
if v > maxUint64-n { // Fast check.
ceiling := maxUint64 - maxUint64%n
for v >= ceiling {
v = r.Uint64()
}
}
return v % n
}
// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Int63n(n int64) int64 {
if n <= 0 {
panic("invalid argument to Int63n")
}
return int64(r.Uint64n(uint64(n)))
}
// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Int31n(n int32) int32 {
if n <= 0 {
panic("invalid argument to Int31n")
}
// TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines.
return int32(r.Uint64n(uint64(n)))
}
// Intn returns, as an int, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Intn(n int) int {
if n <= 0 {
panic("invalid argument to Intn")
}
// TODO: Avoid some 64-bit ops to make it more efficient on 32-bit machines.
return int(r.Uint64n(uint64(n)))
}
// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0).
func (r *Rand) Float64() float64 {
// There is one bug in the value stream: r.Int63() may be so close
// to 1<<63 that the division rounds up to 1.0, and we've guaranteed
// that the result is always less than 1.0.
//
// We tried to fix this by mapping 1.0 back to 0.0, but since float64
// values near 0 are much denser than near 1, mapping 1 to 0 caused
// a theoretically significant overshoot in the probability of returning 0.
// Instead of that, if we round up to 1, just try again.
// Getting 1 only happens 1/2⁵³ of the time, so most clients
// will not observe it anyway.
again:
f := float64(r.Uint64n(1<<53)) / (1 << 53)
if f == 1.0 {
goto again // resample; this branch is taken O(never)
}
return f
}
// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0).
func (r *Rand) Float32() float32 {
// We do not want to return 1.0.
// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).
again:
f := float32(r.Float64())
if f == 1 {
goto again // resample; this branch is taken O(very rarely)
}
return f
}
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n).
func (r *Rand) Perm(n int) []int {
m := make([]int, n)
// In the following loop, the iteration when i=0 always swaps m[0] with m[0].
// A change to remove this useless iteration is to assign 1 to i in the init
// statement. But Perm also effects r. Making this change will affect
// the final state of r. So this change can't be made for compatibility
// reasons for Go 1.
for i := 0; i < n; i++ {
j := r.Intn(i + 1)
m[i] = m[j]
m[j] = i
}
return m
}
// Shuffle pseudo-randomizes the order of elements.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func (r *Rand) Shuffle(n int, swap func(i, j int)) {
if n < 0 {
panic("invalid argument to Shuffle")
}
// Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
// Shuffle really ought not be called with n that doesn't fit in 32 bits.
// Not only will it take a very long time, but with 2³¹! possible permutations,
// there's no way that any PRNG can have a big enough internal state to
// generate even a minuscule percentage of the possible permutations.
// Nevertheless, the right API signature accepts an int n, so handle it as best we can.
i := n - 1
for ; i > 1<<31-1-1; i-- {
j := int(r.Int63n(int64(i + 1)))
swap(i, j)
}
for ; i > 0; i-- {
j := int(r.Int31n(int32(i + 1)))
swap(i, j)
}
}
// Read generates len(p) random bytes and writes them into p. It
// always returns len(p) and a nil error.
// Read should not be called concurrently with any other Rand method unless
// the underlying source is a LockedSource.
func (r *Rand) Read(p []byte) (n int, err error) {
if lk, ok := r.src.(*LockedSource); ok {
return lk.Read(p, &r.readVal, &r.readPos)
}
return read(p, r.src, &r.readVal, &r.readPos)
}
func read(p []byte, src Source, readVal *uint64, readPos *int8) (n int, err error) {
pos := *readPos
val := *readVal
rng, _ := src.(*PCGSource)
for n = 0; n < len(p); n++ {
if pos == 0 {
if rng != nil {
val = rng.Uint64()
} else {
val = src.Uint64()
}
pos = 8
}
p[n] = byte(val)
val >>= 8
pos--
}
*readPos = pos
*readVal = val
return
}
/*
* Top-level convenience functions
*/
var globalRand = New(&LockedSource{src: *NewSource(1).(*PCGSource)})
// Type assert that globalRand's source is a LockedSource whose src is a PCGSource.
var _ PCGSource = globalRand.src.(*LockedSource).src
// Seed uses the provided seed value to initialize the default Source to a
// deterministic state. If Seed is not called, the generator behaves as
// if seeded by Seed(1).
// Seed, unlike the Rand.Seed method, is safe for concurrent use.
func Seed(seed uint64) { globalRand.Seed(seed) }
// Int63 returns a non-negative pseudo-random 63-bit integer as an int64
// from the default Source.
func Int63() int64 { return globalRand.Int63() }
// Uint32 returns a pseudo-random 32-bit value as a uint32
// from the default Source.
func Uint32() uint32 { return globalRand.Uint32() }
// Uint64 returns a pseudo-random 64-bit value as a uint64
// from the default Source.
func Uint64() uint64 { return globalRand.Uint64() }
// Int31 returns a non-negative pseudo-random 31-bit integer as an int32
// from the default Source.
func Int31() int32 { return globalRand.Int31() }
// Int returns a non-negative pseudo-random int from the default Source.
func Int() int { return globalRand.Int() }
// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Int63n(n int64) int64 { return globalRand.Int63n(n) }
// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Int31n(n int32) int32 { return globalRand.Int31n(n) }
// Intn returns, as an int, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Intn(n int) int { return globalRand.Intn(n) }
// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0)
// from the default Source.
func Float64() float64 { return globalRand.Float64() }
// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0)
// from the default Source.
func Float32() float32 { return globalRand.Float32() }
// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n)
// from the default Source.
func Perm(n int) []int { return globalRand.Perm(n) }
// Shuffle pseudo-randomizes the order of elements using the default Source.
// n is the number of elements. Shuffle panics if n < 0.
// swap swaps the elements with indexes i and j.
func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) }
// Read generates len(p) random bytes from the default Source and
// writes them into p. It always returns len(p) and a nil error.
// Read, unlike the Rand.Read method, is safe for concurrent use.
func Read(p []byte) (n int, err error) { return globalRand.Read(p) }
// NormFloat64 returns a normally distributed float64 in the range
// [-math.MaxFloat64, +math.MaxFloat64] with
// standard normal distribution (mean = 0, stddev = 1)
// from the default Source.
// To produce a different normal distribution, callers can
// adjust the output using:
//
// sample = NormFloat64() * desiredStdDev + desiredMean
func NormFloat64() float64 { return globalRand.NormFloat64() }
// ExpFloat64 returns an exponentially distributed float64 in the range
// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
// To produce a distribution with a different rate parameter,
// callers can adjust the output using:
//
// sample = ExpFloat64() / desiredRateParameter
func ExpFloat64() float64 { return globalRand.ExpFloat64() }
// LockedSource is an implementation of Source that is concurrency-safe.
// A Rand using a LockedSource is safe for concurrent use.
//
// The zero value of LockedSource is valid, but should be seeded before use.
type LockedSource struct {
lk sync.Mutex
src PCGSource
}
func (s *LockedSource) Uint64() (n uint64) {
s.lk.Lock()
n = s.src.Uint64()
s.lk.Unlock()
return
}
func (s *LockedSource) Seed(seed uint64) {
s.lk.Lock()
s.src.Seed(seed)
s.lk.Unlock()
}
// seedPos implements Seed for a LockedSource without a race condition.
func (s *LockedSource) seedPos(seed uint64, readPos *int8) {
s.lk.Lock()
s.src.Seed(seed)
*readPos = 0
s.lk.Unlock()
}
// Read implements Read for a LockedSource.
func (s *LockedSource) Read(p []byte, readVal *uint64, readPos *int8) (n int, err error) {
s.lk.Lock()
n, err = read(p, &s.src, readVal, readPos)
s.lk.Unlock()
return
}
|